These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
525 related articles for article (PubMed ID: 9201955)
1. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex. Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955 [TBL] [Abstract][Full Text] [Related]
2. Systematic study of the six cysteines of the E1 subunit of the pyruvate dehydrogenase multienzyme complex from Escherichia coli: none is essential for activity. Nemeria N; Volkov A; Brown A; Yi J; Zipper L; Guest JR; Jordan F Biochemistry; 1998 Jan; 37(3):911-22. PubMed ID: 9454581 [TBL] [Abstract][Full Text] [Related]
3. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme. Nemeria N; Baykal A; Joseph E; Zhang S; Yan Y; Furey W; Jordan F Biochemistry; 2004 Jun; 43(21):6565-75. PubMed ID: 15157089 [TBL] [Abstract][Full Text] [Related]
4. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate. Arjunan P; Chandrasekhar K; Sax M; Brunskill A; Nemeria N; Jordan F; Furey W Biochemistry; 2004 Mar; 43(9):2405-11. PubMed ID: 14992577 [TBL] [Abstract][Full Text] [Related]
5. Direct kinetic evidence for half-of-the-sites reactivity in the E1 component of the human pyruvate dehydrogenase multienzyme complex through alternating sites cofactor activation. Seifert F; Golbik R; Brauer J; Lilie H; Schröder-Tittmann K; Hinze E; Korotchkina LG; Patel MS; Tittmann K Biochemistry; 2006 Oct; 45(42):12775-85. PubMed ID: 17042496 [TBL] [Abstract][Full Text] [Related]
6. Active-site changes in the pyruvate dehydrogenase multienzyme complex E1 apoenzyme component from Escherichia coli observed at 2.32 A resolution. Chandrasekhar K; Arjunan P; Sax M; Nemeria N; Jordan F; Furey W Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1382-6. PubMed ID: 17057342 [TBL] [Abstract][Full Text] [Related]
7. Amino-terminal residues 1-45 of the Escherichia coli pyruvate dehydrogenase complex E1 subunit interact with the E2 subunit and are required for activity of the complex but not for reductive acetylation of the E2 subunit. Park YH; Wei W; Zhou L; Nemeria N; Jordan F Biochemistry; 2004 Nov; 43(44):14037-46. PubMed ID: 15518552 [TBL] [Abstract][Full Text] [Related]
8. Activation of thiamin diphosphate in enzymes. Hübner G; Tittmann K; Killenberg-Jabs M; Schäffner J; Spinka M; Neef H; Kern D; Kern G; Schneider G; Wikner C; Ghisla S Biochim Biophys Acta; 1998 Jun; 1385(2):221-8. PubMed ID: 9655909 [TBL] [Abstract][Full Text] [Related]
9. The design, synthesis and biological evaluation of novel thiamin diphosphate analog inhibitors against the pyruvate dehydrogenase multienzyme complex E1 from Escherichia coli. Feng L; He J; He H; Zhao L; Deng L; Zhang L; Zhang L; Ren Y; Wan J; He H Org Biomol Chem; 2014 Nov; 12(44):8911-8. PubMed ID: 25268578 [TBL] [Abstract][Full Text] [Related]
10. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions. Baburina I; Dikdan G; Guo F; Tous GI; Root B; Jordan F Biochemistry; 1998 Feb; 37(5):1245-55. PubMed ID: 9477950 [TBL] [Abstract][Full Text] [Related]
11. Structure-based rational design of novel hit compounds for pyruvate dehydrogenase multienzyme complex E1 components from Escherichia coli. Ren Y; He J; Feng L; Liao X; Jin J; Li Y; Cao Y; Wan J; He H Bioorg Med Chem; 2011 Dec; 19(24):7501-6. PubMed ID: 22078411 [TBL] [Abstract][Full Text] [Related]
12. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755 [TBL] [Abstract][Full Text] [Related]
13. Effect of substitutions in the thiamin diphosphate-magnesium fold on the activation of the pyruvate dehydrogenase complex from Escherichia coli by cofactors and substrate. Yi J; Nemeria N; McNally A; Jordan F; Machado RS; Guest JR J Biol Chem; 1996 Dec; 271(52):33192-200. PubMed ID: 8969175 [TBL] [Abstract][Full Text] [Related]
14. Phosphonate analogues of pyruvate. Probes of substrate binding to pyruvate oxidase and other thiamin pyrophosphate-dependent decarboxylases. O'Brien TA; Kluger R; Pike DC; Gennis RB Biochim Biophys Acta; 1980; 613(1):10-7. PubMed ID: 6990987 [TBL] [Abstract][Full Text] [Related]
15. Elucidation of the chemistry of enzyme-bound thiamin diphosphate prior to substrate binding: defining internal equilibria among tautomeric and ionization states. Nemeria N; Korotchkina L; McLeish MJ; Kenyon GL; Patel MS; Jordan F Biochemistry; 2007 Sep; 46(37):10739-44. PubMed ID: 17715948 [TBL] [Abstract][Full Text] [Related]
16. Characterization of point mutations in patients with pyruvate dehydrogenase deficiency: role of methionine-181, proline-188, and arginine-349 in the alpha subunit. Tripatara A; Korotchkina LG; Patel MS Arch Biochem Biophys; 1999 Jul; 367(1):39-50. PubMed ID: 10375397 [TBL] [Abstract][Full Text] [Related]
17. C2-alpha-lactylthiamin diphosphate is an intermediate on the pathway of thiamin diphosphate-dependent pyruvate decarboxylation. Evidence on enzymes and models. Zhang S; Liu M; Yan Y; Zhang Z; Jordan F J Biol Chem; 2004 Dec; 279(52):54312-8. PubMed ID: 15501823 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex. Seifert F; Ciszak E; Korotchkina L; Golbik R; Spinka M; Dominiak P; Sidhu S; Brauer J; Patel MS; Tittmann K Biochemistry; 2007 May; 46(21):6277-87. PubMed ID: 17474719 [TBL] [Abstract][Full Text] [Related]
19. Regulation of thiamin diphosphate-dependent 2-oxo acid decarboxylases by substrate and thiamin diphosphate.Mg(II) - evidence for tertiary and quaternary interactions. Jordan F; Nemeria N; Guo F; Baburina I; Gao Y; Kahyaoglu A; Li H; Wang J; Yi J; Guest JR; Furey W Biochim Biophys Acta; 1998 Jun; 1385(2):287-306. PubMed ID: 9655921 [TBL] [Abstract][Full Text] [Related]
20. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Hohmann S; Meacock PA Biochim Biophys Acta; 1998 Jun; 1385(2):201-19. PubMed ID: 9655908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]