BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9202006)

  • 1. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase.
    Hemmer W; McGlone M; Tsigelny I; Taylor SS
    J Biol Chem; 1997 Jul; 272(27):16946-54. PubMed ID: 9202006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors.
    Aimes RT; Hemmer W; Taylor SS
    Biochemistry; 2000 Jul; 39(28):8325-32. PubMed ID: 10889042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase.
    Grant BD; Hemmer W; Tsigelny I; Adams JA; Taylor SS
    Biochemistry; 1998 May; 37(21):7708-15. PubMed ID: 9601030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli.
    Yonemoto W; McGlone ML; Grant B; Taylor SS
    Protein Eng; 1997 Aug; 10(8):915-25. PubMed ID: 9415441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.
    Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N
    Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic assessment of the glycine-rich loop of the v-Fps oncoprotein using site-directed mutagenesis.
    Hirai TJ; Tsigelny I; Adams JA
    Biochemistry; 2000 Oct; 39(43):13276-84. PubMed ID: 11052681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis by mutagenesis of the ATP binding site of the gamma subunit of skeletal muscle phosphorylase kinase expressed using a baculovirus system.
    Lee JH; Maeda S; Angelos KL; Kamita SG; Ramachandran C; Walsh DA
    Biochemistry; 1992 Nov; 31(43):10616-25. PubMed ID: 1420177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global consequences of activation loop phosphorylation on protein kinase A.
    Steichen JM; Iyer GH; Li S; Saldanha SA; Deal MS; Woods VL; Taylor SS
    J Biol Chem; 2010 Feb; 285(6):3825-3832. PubMed ID: 19965870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the importance of hydrophobic residues in the interactions between the cAMP-dependent protein kinase catalytic subunit and the protein kinase inhibitors.
    Baude EJ; Dignam SS; Reimann EM; Uhler MD
    J Biol Chem; 1994 Jul; 269(27):18128-33. PubMed ID: 8027074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant strategies for rapid purification of catalytic subunits of cAMP-dependent protein kinase.
    Hemmer W; McGlone M; Taylor SS
    Anal Biochem; 1997 Feb; 245(2):115-22. PubMed ID: 9056191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holoenzyme interaction sites in the cAMP-dependent protein kinase. Histidine 87 in the catalytic subunit complements serine 99 in the type I regulatory subunit.
    Cox S; Taylor SS
    J Biol Chem; 1994 Sep; 269(36):22614-22. PubMed ID: 8077212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism.
    Yang J; Ten Eyck LF; Xuong NH; Taylor SS
    J Mol Biol; 2004 Feb; 336(2):473-87. PubMed ID: 14757059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro phosphorylation by cAMP-dependent protein kinase up-regulates recombinant Saccharomyces cerevisiae mannosylphosphodolichol synthase.
    Banerjee DK; Carrasquillo EA; Hughey P; Schutzbach JS; Martínez JA; Baksi K
    J Biol Chem; 2005 Feb; 280(6):4174-81. PubMed ID: 15548536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamic acid 203 of the cAMP-dependent protein kinase catalytic subunit participates in the inhibition by two isoforms of the protein kinase inhibitor.
    Baude EJ; Dignam SS; Olsen SR; Reimann EM; Uhler MD
    J Biol Chem; 1994 Jan; 269(3):2316-23. PubMed ID: 7905001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of Pro-17 located in the glycine-rich region of adenylate kinase.
    Tagaya M; Yagami T; Noumi T; Futai M; Kishi F; Nakazawa A; Fukui T
    J Biol Chem; 1989 Jan; 264(2):990-4. PubMed ID: 2536029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface.
    Herberg FW; Zimmermann B; McGlone M; Taylor SS
    Protein Sci; 1997 Mar; 6(3):569-79. PubMed ID: 9070439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the catalytic site and the A-M3 linker stabilizes E2/E2P conformational states of Na+,K+-ATPase.
    Toustrup-Jensen M; Vilsen B
    J Biol Chem; 2005 Mar; 280(11):10210-8. PubMed ID: 15574410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.