These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9202170)

  • 1. Actin assembly by cadmium ions.
    DalleDonne I; Milzani A; Colombo R
    Biochim Biophys Acta; 1997 Jun; 1357(1):5-17. PubMed ID: 9202170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular factors mediate cadmium-dependent actin depolymerization.
    Wang Z; Templeton DM
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):115-21. PubMed ID: 8685893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-independent effects of cadmium on actin assembly in mesangial and vascular smooth muscle cells.
    Wang Z; Chin TA; Templeton DM
    Cell Motil Cytoskeleton; 1996; 33(3):208-22. PubMed ID: 8674140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of adrenal cell functions by cadmium salts. 4. Ca(2+)-dependent sites affected by CdCl2 during basal and ACTH-stimulated steroid synthesis.
    Mathias SA; Mgbonyebi OP; Motley E; Owens JR; Mrotek JJ
    Cell Biol Toxicol; 1998 Jun; 14(3):225-36. PubMed ID: 9689495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization.
    DalleDonne I; Milzani A; Colombo R
    Arch Biochem Biophys; 1998 Mar; 351(2):141-8. PubMed ID: 9514647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between polymerizability and conformation in scallop beta-like actin and rabbit skeletal muscle alpha-actin.
    Khaitlina S; Antropova O; Kuznetsova I; Turoverov K; Collins JH
    Arch Biochem Biophys; 1999 Aug; 368(1):105-11. PubMed ID: 10415117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions.
    Mossakowska M; Moraczewska J; Khaitlina S; Strzelecka-Golaszewska H
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):897-902. PubMed ID: 8435084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substoichiometric concentrations of ATP-G-actin are required to anneal actin polymerized by calcium ions.
    Grazi E; Trombetta G; Rizzieri L; Guidoboni M
    Biochem Biophys Res Commun; 1989 Feb; 159(1):7-13. PubMed ID: 2923625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A correlative analysis of actin filament assembly, structure, and dynamics.
    Steinmetz MO; Goldie KN; Aebi U
    J Cell Biol; 1997 Aug; 138(3):559-74. PubMed ID: 9245786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of gelsolin in cadmium-induced disruption of the mesangial cell cytoskeleton.
    Apostolova MD; Christova T; Templeton DM
    Toxicol Sci; 2006 Feb; 89(2):465-74. PubMed ID: 16280379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament.
    Khaitlina SY; Moraczewska J; Strzelecka-Gołaszewska H
    Eur J Biochem; 1993 Dec; 218(3):911-20. PubMed ID: 8281943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing the two C-terminal residues of actin affects the filament structure.
    O'Donoghue SI; Miki M; dos Remedios CG
    Arch Biochem Biophys; 1992 Feb; 293(1):110-6. PubMed ID: 1731627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation and elongation of actin filaments in the presence of high speed supernate from neutrophil lysates: modulating effects of Ca2+ and phosphatidylinositol-4,5-bisphosphate.
    DiNubile MJ
    Biochim Biophys Acta; 1998 Oct; 1405(1-3):85-98. PubMed ID: 9784614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation of actin polymerization by gelsolin.
    Ditsch A; Wegner A
    Eur J Biochem; 1994 Aug; 224(1):223-7. PubMed ID: 8076643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature on actin polymerized by Ca2+. Direct evidence of fragmentation.
    Grazi E; Trombetta G
    Biochem J; 1985 Nov; 232(1):297-300. PubMed ID: 4084236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium increases actin polymerization rates by enhancing the nucleation step.
    Colombo R; Milzani A; Donne ID
    J Mol Biol; 1991 Feb; 217(3):401-4. PubMed ID: 1994029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.
    DalleDonne I; Milzani A; Colombo R
    Biophys J; 1995 Dec; 69(6):2710-9. PubMed ID: 8599677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of KCl, MgCl2, and CaCl2 concentrations on the monomer-polymer equilibrium of actin in the presence and absence of cytochalasin D.
    Maruyama K; Tsukagoshi K
    J Biochem; 1984 Sep; 96(3):605-11. PubMed ID: 6444205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.