These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 920218)

  • 1. Structural renal vascular changes in renal hypertensive rats (RHR).
    Folkow B; Göthberg G; Lundin S; Ricksten SE
    Acta Physiol Scand; 1977 Oct; 101(2):254-6. PubMed ID: 920218
    [No Abstract]   [Full Text] [Related]  

  • 2. Structurally based changes of renal vascular reactivity in spontaneously hypertensive and two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uninephrectomized and intact normotensive rats.
    Göthberg G; Hallbäck-Nordlander M; Karlström G; Ricksten SE; Folkow B
    Acta Physiol Scand; 1983 May; 118(1):61-7. PubMed ID: 6624497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Structural autoregulation" of blood flow and GFR in the two renal vascular beds from two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uni-nephrectomized and intact normotensive rats.
    Göthberg G; Folkow B
    Acta Physiol Scand; 1983 Jun; 118(2):141-8. PubMed ID: 6624501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Renal hypertension and kidney autoregulation].
    Ofstad J
    Nord Med; 1971 Nov; 86(44):1265-70. PubMed ID: 4940720
    [No Abstract]   [Full Text] [Related]  

  • 5. The blood brain barrier in renal hypertensive rats.
    Johansson BB; Linder LE
    Clin Exp Hypertens (1978); 1980; 2(6):983-93. PubMed ID: 7449583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal and cardiodynamic effects of prostaglandins in normal and hypertensive dogs.
    Schoonees R; Hesse VE; Mostert J; Hobika GH; Abramczyk J; Szolnoky A; Kenny GM; Murphy GP
    Surg Forum; 1970; 21():536-8. PubMed ID: 5514934
    [No Abstract]   [Full Text] [Related]  

  • 7. Adaptive changes of cardiovascular design in spontaneous and renal hypertension. Hemodynamic studies in rats.
    Lundgren Y
    Acta Physiol Scand Suppl; 1974; 408():1-62. PubMed ID: 4528407
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of DOCA-salt on angiotensin dependency and surgical reversal of hypertension in two-kidney, one clip renal hypertensive rats.
    Takata Y; Doyle AE
    J Hypertens; 1983 Jun; 1(1):57-63. PubMed ID: 6397514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular effects of bromocriptine and lergotrile in renal and spontaneously hypertensive rats.
    Tadepalli AS; Novak PJ
    Arch Int Pharmacodyn Ther; 1983 Nov; 266(1):93-105. PubMed ID: 6141774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence on external calcium for the noradrenaline contractility of the resistance vessels in spontaneously hypertensive and renal hypertensive rats, as compared with normotensive controls.
    Folkow B; Hallbäck M; Jones JV; Sutter M
    Acta Physiol Scand; 1977 Sep; 101(1):84-97. PubMed ID: 906865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regression of structural cardiovascular changes after reversal of experimental renal hypertension in rats.
    Lundgren Y
    Acta Physiol Scand; 1974 Jun; 91(2):275-85. PubMed ID: 4846324
    [No Abstract]   [Full Text] [Related]  

  • 12. Vasodilator responses to K+ in genetic hypertensive and in renal hypertensive rats.
    Overbeck HW; Clark DW
    J Lab Clin Med; 1975 Dec; 86(6):973-83. PubMed ID: 1194759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ligustrazine on Ca2+ uptake by inside-out red cell membrane vesicles from renal hypertensive rats.
    Luo H; Wen YY; Chen MQ
    Proc Chin Acad Med Sci Peking Union Med Coll; 1989; 4(4):220-3. PubMed ID: 2631121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal vascular resistance in spontaneously hypertensive rats.
    Folkow B; Hallbäck M; Lundgren Y; Weiss L
    Acta Physiol Scand; 1971 Sep; 83(1):96-105. PubMed ID: 5095031
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural and functional adaptation in the rat myocardium and coronary vascular bed caused by changes in pressure and volume load.
    Friberg P
    Acta Physiol Scand Suppl; 1985; 540():1-47. PubMed ID: 3161269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympatho-renal interactions in the determination of arterial pressure: role in hypertension.
    Grisk O
    Exp Physiol; 2005 Mar; 90(2):183-7. PubMed ID: 15604108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats.
    Knudsen T; Elmer H; Knudsen MH; Holstein-Rathlou NH; Stoustrup J
    IEEE Trans Biomed Eng; 2004 May; 51(5):689-97. PubMed ID: 15132494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the renal component of the hypertension in rats with aortic constriction. Role of angiotensin II.
    Sahlgren B; Eklöf AC; Aperia A
    Acta Physiol Scand; 1986 Aug; 127(4):443-8. PubMed ID: 3529826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyuria, hypertension, and altered renal function in experimental microembolic renal disease. Relation to hypertensive diseases in man.
    Solez K; Jaenike JR; Richter GW
    Lab Invest; 1972 Sep; 27(3):243-53. PubMed ID: 5057532
    [No Abstract]   [Full Text] [Related]  

  • 20. High renal plasma flow lability in the kidneys of hypertensive patients.
    Iaina A; Feldman RD; Silverberg DS; Eliahou HE
    Biomedicine; 1978 Jun; 29(4):126-9. PubMed ID: 687755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.