BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 9202251)

  • 1. Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy.
    Yamate T; Mocharla H; Taguchi Y; Igietseme JU; Manolagas SC; Abe E
    Endocrinology; 1997 Jul; 138(7):3047-55. PubMed ID: 9202251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis.
    Kovacić N; Lukić IK; Grcević D; Katavić V; Croucher P; Marusić A
    J Immunol; 2007 Mar; 178(6):3379-89. PubMed ID: 17339432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression.
    Chellaiah MA; Kizer N; Biswas R; Alvarez U; Strauss-Schoenberger J; Rifas L; Rittling SR; Denhardt DT; Hruska KA
    Mol Biol Cell; 2003 Jan; 14(1):173-89. PubMed ID: 12529435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia.
    Kawaguchi H; Manabe N; Miyaura C; Chikuda H; Nakamura K; Kuro-o M
    J Clin Invest; 1999 Aug; 104(3):229-37. PubMed ID: 10430604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol.
    Di Gregorio GB; Yamamoto M; Ali AA; Abe E; Roberson P; Manolagas SC; Jilka RL
    J Clin Invest; 2001 Apr; 107(7):803-12. PubMed ID: 11285299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased osteoclastogenesis in mice lacking the carcinoembryonic antigen-related cell adhesion molecule 1.
    Heckt T; Bickert T; Jeschke A; Seitz S; Schulze J; Ito WD; Zimmermann W; Amling M; Schinke T; Horst AK; Keller J
    PLoS One; 2014; 9(12):e114360. PubMed ID: 25490771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice.
    Kim HN; Chang J; Iyer S; Han L; Campisi J; Manolagas SC; Zhou D; Almeida M
    Aging Cell; 2019 Jun; 18(3):e12923. PubMed ID: 30773784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Megakaryocytes Enhance Mesenchymal Stromal Cells Proliferation and Inhibit Differentiation.
    Emmakah AM; Arman HE; Alvarez MB; Childress PJ; Bidwell JP; Goebel WS; Gabriel Chu TM; Kacena MA
    J Cell Biochem; 2017 Jul; ():. PubMed ID: 28722829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulating sRANKL, Periostin, and Osteopontin as Biomarkers for the Assessment of Activated Osteoclastogenesis in Myeloma Related Bone Disease.
    Gerov V; Gerova D; Micheva I; Nikolova M; Pasheva M; Nazifova N; Galunska B
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of artificial bone graft via
    Ma C; Tao C; Zhang Z; Zhou H; Fan C; Wang DA
    Mater Today Bio; 2023 Dec; 23():100893. PubMed ID: 38161510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature.
    Hild V; Mellert K; Möller P; Barth TFE
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Osteopontin and Bone Mineral Density.
    Vancea A; Serban O; Fodor D
    Acta Endocrinol (Buchar); 2021; 17(4):509-516. PubMed ID: 35747863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone Defect Repair Using a Bone Substitute Supported by Mesenchymal Stem Cells Derived from the Umbilical Cord.
    Kosinski M; Figiel-Dabrowska A; Lech W; Wieprzowski L; Strzalkowski R; Strzemecki D; Cheda L; Lenart J; Domanska-Janik K; Sarnowska A
    Stem Cells Int; 2020; 2020():1321283. PubMed ID: 32300364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ganoderma lucidum, a promising agent possessing antioxidant and anti-inflammatory effects for treating calvarial defects with graft application in rats.
    Laçin N; İzol SB; İpek F; Tuncer MC
    Acta Cir Bras; 2019; 34(9):e201900904. PubMed ID: 31778526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term use of resveratrol in alloplastic graft material applied with calvarial bone defects in rats.
    Laçin N; Deveci E
    Acta Cir Bras; 2019 Sep; 34(7):e201900704. PubMed ID: 31531539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of graft application and allopurinol treatment on calvarial bone defect in rats1.
    Laçin N; İzol BS; Özkorkmaz EG; Deveci B; Tuncer MC
    Acta Cir Bras; 2019 Mar; 34(3):e201900306. PubMed ID: 30892392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cells: key players in cancer progression.
    Ridge SM; Sullivan FJ; Glynn SA
    Mol Cancer; 2017 Feb; 16(1):31. PubMed ID: 28148268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development.
    Jeradi S; Hammerschmidt M
    Development; 2016 Apr; 143(7):1205-16. PubMed ID: 26903503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matricellular proteins as regulators of cancer metastasis to bone.
    Trotter TN; Yang Y
    Matrix Biol; 2016; 52-54():301-314. PubMed ID: 26807761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostate cancer and bone: the elective affinities.
    Rucci N; Angelucci A
    Biomed Res Int; 2014; 2014():167035. PubMed ID: 24971315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.