These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9202944)

  • 1. Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer.
    Linossier MT; Dormois D; Geyssant A; Denis C
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):491-8. PubMed ID: 9202944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the force-velocity test to determine the optimal braking force for a sprint exercise on a friction-loaded cycle ergometer.
    Linossier MT; Dormois D; Fouquet R; Geyssant A; Denis C
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):420-7. PubMed ID: 8954289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.
    Abernethy PJ; Thayer R; Taylor AW
    Sports Med; 1990 Dec; 10(6):365-89. PubMed ID: 2291032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
    Linossier MT; Dormois D; Perier C; Frey J; Geyssant A; Denis C
    Acta Physiol Scand; 1997 Dec; 161(4):439-45. PubMed ID: 9429650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and sex affect human muscle fibre adaptations to heavy-resistance strength training.
    Martel GF; Roth SM; Ivey FM; Lemmer JT; Tracy BL; Hurlbut DE; Metter EJ; Hurley BF; Rogers MA
    Exp Physiol; 2006 Mar; 91(2):457-64. PubMed ID: 16407471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining.
    Andersen LL; Andersen JL; Magnusson SP; Suetta C; Madsen JL; Christensen LR; Aagaard P
    J Appl Physiol (1985); 2005 Jul; 99(1):87-94. PubMed ID: 15731398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in the proportion of fast-twitch muscle fibres by sprint training in males.
    Jansson E; Esbjörnsson M; Holm I; Jacobs I
    Acta Physiol Scand; 1990 Nov; 140(3):359-63. PubMed ID: 2150579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition.
    Hautier CA; Linossier MT; Belli A; Lacour JR; Arsac LM
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):114-8. PubMed ID: 8891509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.
    Ross A; Leveritt M
    Sports Med; 2001; 31(15):1063-82. PubMed ID: 11735686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle fibre characteristics in young women.
    Nygaard E
    Acta Physiol Scand; 1981 Jul; 112(3):299-304. PubMed ID: 6457505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of combined strength and sprint training on regulation of muscle contraction at the whole-muscle and single-fibre levels in elite master sprinters.
    Cristea A; Korhonen MT; Häkkinen K; Mero A; Alén M; Sipilä S; Viitasalo JT; Koljonen MJ; Suominen H; Larsson L
    Acta Physiol (Oxf); 2008 Jul; 193(3):275-89. PubMed ID: 18284658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes.
    Hvid LG; Gejl K; Bech RD; Nygaard T; Jensen K; Frandsen U; Ørtenblad N
    Acta Physiol (Oxf); 2013 Jul; 208(3):265-73. PubMed ID: 23480612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers.
    Evertsen F; Medbo JI; Jebens E; Gjøvaag TF
    Acta Physiol Scand; 1999 Nov; 167(3):247-57. PubMed ID: 10606827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint-training effects on some contractile properties of single skinned human muscle fibres.
    Lynch GS; McKenna MJ; Williams DA
    Acta Physiol Scand; 1994 Nov; 152(3):295-306. PubMed ID: 7872007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural influences on sprint running: training adaptations and acute responses.
    Ross A; Leveritt M; Riek S
    Sports Med; 2001; 31(6):409-25. PubMed ID: 11394561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training.
    Dawson B; Fitzsimons M; Green S; Goodman C; Carey M; Cole K
    Eur J Appl Physiol Occup Physiol; 1998 Jul; 78(2):163-9. PubMed ID: 9694316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.
    Jaskólska A; Goossens P; Veenstra B; Jaskólski A; Skinner JS
    Int J Sports Med; 1999 Apr; 20(3):192-7. PubMed ID: 10333097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for assessing muscle fatigue during sprint exercise in humans using a friction-loaded cycle ergometer.
    Hautier CA; Belli A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):231-5. PubMed ID: 9721001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergometric and metabolic adaptation to a 5-s sprint training programme.
    Linossier MT; Denis C; Dormois D; Geyssant A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1993; 67(5):408-14. PubMed ID: 8299612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.