These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 9203154)
1. Design and evaluation of a device for measuring three-dimensional micromotions of press-fit femoral stem prostheses. Bühler DW; Oxland TR; Nolte LP Med Eng Phys; 1997 Mar; 19(2):187-99. PubMed ID: 9203154 [TBL] [Abstract][Full Text] [Related]
2. Comparisons of the surface micromotions of cementless femoral prosthesis in the horizontal and vertical levels: a network analysis of biomechanical studies. Wang B; Li Q; Dong J; Zhou D; Liu F J Orthop Surg Res; 2020 Jul; 15(1):293. PubMed ID: 32736633 [TBL] [Abstract][Full Text] [Related]
3. The effect of dynamic hip motion on the micromotion of press-fit acetabular cups in six degrees of freedom. Crosnier EA; Keogh PS; Miles AW Med Eng Phys; 2016 Aug; 38(8):717-24. PubMed ID: 27210567 [TBL] [Abstract][Full Text] [Related]
4. A biomechanical testing system to determine micromotion between hip implant and femur accounting for deformation of the hip implant: Assessment of the influence of rigid body assumptions on micromotions measurements. Leuridan S; Goossens Q; Roosen J; Pastrav L; Denis K; Mulier M; Desmet W; Vander Sloten J Clin Biomech (Bristol, Avon); 2017 Feb; 42():70-78. PubMed ID: 28110243 [TBL] [Abstract][Full Text] [Related]
5. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses. Gilbert JL; Bloomfeld RS; Lautenschlager EP; Wixson RL J Biomech; 1992 Apr; 25(4):329-40. PubMed ID: 1583012 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous and multisite measure of micromotion, subsidence and gap to evaluate femoral stem stability. Gortchacow M; Wettstein M; Pioletti DP; Müller-Gerbl M; Terrier A J Biomech; 2012 Apr; 45(7):1232-8. PubMed ID: 22356845 [TBL] [Abstract][Full Text] [Related]
7. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. Goossens Q; Pastrav LC; Mulier M; Desmet W; Vander Sloten J; Denis K Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31906330 [TBL] [Abstract][Full Text] [Related]
8. Experimental method for the in vitro testing of the initial stability of cementless hip prostheses. Schneider E; Eulenberger J; Steiner W; Wyder D; Friedman RJ; Perren SM J Biomech; 1989; 22(6-7):735-44. PubMed ID: 2808455 [TBL] [Abstract][Full Text] [Related]
9. A new technique to measure micromotion distribution around a cementless femoral stem. Gortchacow M; Wettstein M; Pioletti DP; Terrier A J Biomech; 2011 Feb; 44(3):557-60. PubMed ID: 20934705 [TBL] [Abstract][Full Text] [Related]
12. Effect of a collar on subsidence and local micromotion of cementless femoral stems: in vitro comparative study based on micro-computerised tomography. Malfroy Camine V; Rüdiger HA; Pioletti DP; Terrier A Int Orthop; 2018 Jan; 42(1):49-57. PubMed ID: 28589313 [TBL] [Abstract][Full Text] [Related]
13. Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers. Malfroy Camine V; Rüdiger HA; Pioletti DP; Terrier A J Biomech; 2016 Dec; 49(16):4002-4008. PubMed ID: 27823803 [TBL] [Abstract][Full Text] [Related]
14. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
15. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Andreaus U; Colloca M Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912 [TBL] [Abstract][Full Text] [Related]
16. Strains and micromotions of press-fit femoral stem prostheses. Walker PS; Schneeweis D; Murphy S; Nelson P J Biomech; 1987; 20(7):693-702. PubMed ID: 3654667 [TBL] [Abstract][Full Text] [Related]
17. Efficient computational method for assessing the effects of implant positioning in cementless total hip replacements. Bah MT; Nair PB; Taylor M; Browne M J Biomech; 2011 Apr; 44(7):1417-22. PubMed ID: 21295306 [TBL] [Abstract][Full Text] [Related]
18. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty. An in vitro comparison of different methods of initial acetabular component fixation. Perona PG; Lawrence J; Paprosky WG; Patwardhan AG; Sartori M J Arthroplasty; 1992 Dec; 7(4):537-47. PubMed ID: 1479374 [TBL] [Abstract][Full Text] [Related]
19. Influence of material coupling and assembly condition on the magnitude of micromotion at the stem-neck interface of a modular hip endoprosthesis. Jauch SY; Huber G; Hoenig E; Baxmann M; Grupp TM; Morlock MM J Biomech; 2011 Jun; 44(9):1747-51. PubMed ID: 21531416 [TBL] [Abstract][Full Text] [Related]
20. In vitro assessments of reverse glenoid stability using displacement gages are misleading - recommendations for accurate measurements of interface micromotion. Favre P; Perala S; Vogel P; Fucentese SF; Goff JR; Gerber C; Snedeker JG Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):917-22. PubMed ID: 21658824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]