BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 9203372)

  • 1. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study.
    Chang SC; MacRobert AJ; Porter JB; Bown SG
    J Photochem Photobiol B; 1997 Apr; 38(2-3):114-22. PubMed ID: 9203372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy.
    Anayo L; Magnussen A; Perry A; Wood M; Curnow A
    Lasers Surg Med; 2018 Jul; 50(5):552-565. PubMed ID: 29603761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: an in vivo study comparing oral and intravesical ALA administration.
    Chang SC; Buonaccorsi G; MacRobert AJ; Bown SG
    Lasers Surg Med; 1997; 20(3):254-64. PubMed ID: 9138254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents.
    Curnow A; McIlroy BW; Postle-Hacon MJ; Porter JB; MacRobert AJ; Bown SG
    Br J Cancer; 1998 Nov; 78(10):1278-82. PubMed ID: 9823966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions.
    Blake E; Allen J; Curnow A
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug.
    Curnow A; Perry A; Wood M
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():157-165. PubMed ID: 30553949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydroxypyridinone iron chelator CP94 can enhance PpIX-induced PDT of cultured human glioma cells.
    Blake E; Curnow A
    Photochem Photobiol; 2010; 86(5):1154-60. PubMed ID: 20573043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical manipulation via iron chelation to enhance porphyrin production from porphyrin precursors.
    Curnow A; Pye A
    J Environ Pathol Toxicol Oncol; 2007; 26(2):89-103. PubMed ID: 17725535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodistribution of protoporphyrin IX in rat urinary bladder after intravesical instillation of 5-aminolevulinic acid.
    Chang SC; MacRobert AJ; Bown SG
    J Urol; 1996 May; 155(5):1744-8. PubMed ID: 8627876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fluorescence biodistribution and kinetics of aminolevulinic acid induced protoporphyrin IX in the bladder of a rat model with orthotopic urothelial carcinoma.
    Gronlund-Pakkanen S; Wahlfors J; Makinen K; Pakkanen TM; Talja M; Ala-Opas M; Alhava E; Moore RB
    J Urol; 2002 Apr; 167(4):1848-53. PubMed ID: 11912446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells.
    Pye A; Curnow A
    Photochem Photobiol; 2007; 83(3):766-73. PubMed ID: 17576385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection.
    Blake E; Allen J; Curnow A
    Photochem Photobiol; 2011; 87(6):1419-26. PubMed ID: 21834866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodistribution of Photofrin II and 5-aminolevulinic acid-induced protoporphyrin IX in normal rat bladder and bladder tumor models: implications for photodynamic therapy.
    Xiao Z; Miller GG; McCallum TJ; Brown KM; Lown JW; Tulip J; Moore RB
    Photochem Photobiol; 1998 May; 67(5):573-83. PubMed ID: 9613241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo fluorescence kinetics of porphyrins following intravesical instillation of 5-aminolaevulinic acid in normal and tumour-bearing rat bladders.
    Heil P; Stocker S; Sroka R; Baumgartner R
    J Photochem Photobiol B; 1997 Apr; 38(2-3):158-63. PubMed ID: 9203377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy.
    Magnussen A; Reburn C; Perry A; Wood M; Curnow A
    Lasers Med Sci; 2022 Mar; 37(2):1155-1166. PubMed ID: 34218351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells.
    Bech O; Phillips D; Moan J; MacRobert AJ
    J Photochem Photobiol B; 1997 Nov; 41(1-2):136-44. PubMed ID: 9440321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of fluorescence distribution and kinetics of ALA-induced PpIX in the bladder in photodynamic therapy.
    Grönlund-Pakkanen S; Mäkinen K; Talja M; Kuusisto A; Alhava E
    J Photochem Photobiol B; 1997 Apr; 38(2-3):269-73. PubMed ID: 9203390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study.
    Lange N; Jichlinski P; Zellweger M; Forrer M; Marti A; Guillou L; Kucera P; Wagnières G; van den Bergh H
    Br J Cancer; 1999 Apr; 80(1-2):185-93. PubMed ID: 10389995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy.
    Loh CS; MacRobert AJ; Bedwell J; Regula J; Krasner N; Bown SG
    Br J Cancer; 1993 Jul; 68(1):41-51. PubMed ID: 8318419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species.
    Dogra Y; Ferguson DCJ; Dodd NJF; Smerdon GR; Curnow A; Winyard PG
    Redox Biol; 2016 Oct; 9():90-99. PubMed ID: 27454766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.