These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9203387)

  • 1. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation.
    Zeng H; MacAulay C; McLean DI; Palcic B
    J Photochem Photobiol B; 1997 Apr; 38(2-3):234-40. PubMed ID: 9203387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.
    Drakaki E; Makropoulou M; Serafetinides AA
    Lasers Med Sci; 2008 Jul; 23(3):267-76. PubMed ID: 17674121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies.
    Chaudhari AJ; Ahn S; Levenson R; Badawi RD; Cherry SR; Leahy RM
    Phys Med Biol; 2009 Aug; 54(15):4687-704. PubMed ID: 19590118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling.
    Zeng H; MacAulay C; McLean DI; Palcic B; Lui H
    Photochem Photobiol; 1998 Aug; 68(2):227-36. PubMed ID: 9723216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of fluorescent light.
    Welch AJ; Gardner C; Richards-Kortum R; Chan E; Criswell G; Pfefer J; Warren S
    Lasers Surg Med; 1997; 21(2):166-78. PubMed ID: 9261794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations.
    Xie H; Liu H; Svenmarker P; Axelsson J; Xu CT; Gräfe S; Lundeman JH; Cheng HP; Svanberg S; Bendsoe N; Andersen PE; Svanberg K; Andersson-Engels S
    J Biomed Opt; 2011 Jun; 16(6):066002. PubMed ID: 21721803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the skin reflectance spectra.
    Meglinski IV; Matcher SJ
    Comput Methods Programs Biomed; 2003 Feb; 70(2):179-86. PubMed ID: 12507793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations.
    Hyde DE; Farrell TJ; Patterson MS; Wilson BC
    Phys Med Biol; 2001 Feb; 46(2):369-83. PubMed ID: 11229720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering intrinsic fluorescence by Monte Carlo modeling.
    Müller M; Hendriks BH
    J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of fluorescence spectra of normal and dysplastic cervical tissues for optimizing excitation/receiving arrangements.
    Chu SC; Chiang HK
    Appl Spectrosc; 2010 Jul; 64(7):708-13. PubMed ID: 20615282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying spatial localization of optical mapping using Monte Carlo simulations.
    Ding L; Splinter R; Knisley SB
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1098-107. PubMed ID: 11585033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Monte Carlo simulations in quantitative tissue imaging.
    Maeder U; Schmidts T; Avci E; Heverhagen JT; Runkel F; Fiebich M
    Int J Artif Organs; 2010 Apr; 33(4):253-9. PubMed ID: 20458695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.