BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9203387)

  • 1. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation.
    Zeng H; MacAulay C; McLean DI; Palcic B
    J Photochem Photobiol B; 1997 Apr; 38(2-3):234-40. PubMed ID: 9203387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.
    Drakaki E; Makropoulou M; Serafetinides AA
    Lasers Med Sci; 2008 Jul; 23(3):267-76. PubMed ID: 17674121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies.
    Chaudhari AJ; Ahn S; Levenson R; Badawi RD; Cherry SR; Leahy RM
    Phys Med Biol; 2009 Aug; 54(15):4687-704. PubMed ID: 19590118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling.
    Zeng H; MacAulay C; McLean DI; Palcic B; Lui H
    Photochem Photobiol; 1998 Aug; 68(2):227-36. PubMed ID: 9723216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of fluorescent light.
    Welch AJ; Gardner C; Richards-Kortum R; Chan E; Criswell G; Pfefer J; Warren S
    Lasers Surg Med; 1997; 21(2):166-78. PubMed ID: 9261794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations.
    Xie H; Liu H; Svenmarker P; Axelsson J; Xu CT; Gräfe S; Lundeman JH; Cheng HP; Svanberg S; Bendsoe N; Andersen PE; Svanberg K; Andersson-Engels S
    J Biomed Opt; 2011 Jun; 16(6):066002. PubMed ID: 21721803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the skin reflectance spectra.
    Meglinski IV; Matcher SJ
    Comput Methods Programs Biomed; 2003 Feb; 70(2):179-86. PubMed ID: 12507793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations.
    Hyde DE; Farrell TJ; Patterson MS; Wilson BC
    Phys Med Biol; 2001 Feb; 46(2):369-83. PubMed ID: 11229720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering intrinsic fluorescence by Monte Carlo modeling.
    Müller M; Hendriks BH
    J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of fluorescence spectra of normal and dysplastic cervical tissues for optimizing excitation/receiving arrangements.
    Chu SC; Chiang HK
    Appl Spectrosc; 2010 Jul; 64(7):708-13. PubMed ID: 20615282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying spatial localization of optical mapping using Monte Carlo simulations.
    Ding L; Splinter R; Knisley SB
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1098-107. PubMed ID: 11585033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Monte Carlo simulations in quantitative tissue imaging.
    Maeder U; Schmidts T; Avci E; Heverhagen JT; Runkel F; Fiebich M
    Int J Artif Organs; 2010 Apr; 33(4):253-9. PubMed ID: 20458695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.