BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9204440)

  • 21. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.
    Tang J; Breaker RR
    RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro selection of hairpin ribozymes.
    Sargueil B; Burke JM
    Methods Mol Biol; 1997; 74():289-300. PubMed ID: 9204444
    [No Abstract]   [Full Text] [Related]  

  • 23. Design and validation of therapeutic hammerhead ribozymes for autosomal dominant diseases.
    Fritz JJ; Gorbatyuk M; Lewin AS; Hauswirth WW
    Methods Mol Biol; 2004; 252():221-36. PubMed ID: 15017052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hammerhead ribozymes with a faster cleavage rate.
    Clouet-d'Orval B; Uhlenbeck OC
    Biochemistry; 1997 Jul; 36(30):9087-92. PubMed ID: 9254134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative single-turnover kinetic analyses of trans-cleaving hammerhead ribozymes with naturally derived non-conserved sequence motifs.
    Weinberg MS; Rossi JJ
    FEBS Lett; 2005 Mar; 579(7):1619-24. PubMed ID: 15757651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of ribozyme function by RNA binding proteins.
    Lee NS; Bertrand E; Rossi JJ
    Methods Mol Biol; 1997; 74():275-9. PubMed ID: 9204442
    [No Abstract]   [Full Text] [Related]  

  • 27. A core folding model for catalysis by the hammerhead ribozyme accounts for its extraordinary sensitivity to abasic mutations.
    Peracchi A; Karpeisky A; Maloney L; Beigelman L; Herschlag D
    Biochemistry; 1998 Oct; 37(42):14765-75. PubMed ID: 9778351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LNA nucleotides improve cleavage efficiency of singular and binary hammerhead ribozymes.
    Christiansen JK; Lobedanz S; Arar K; Wengel J; Vester B
    Bioorg Med Chem; 2007 Sep; 15(18):6135-43. PubMed ID: 17624789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIV-1 TAR as anchoring site for optimized catalytic RNAs.
    Puerta-Fernandez E; Barroso-del Jesus A; Romero-López C; Berzal-Herranz A
    Biol Chem; 2003 Mar; 384(3):343-50. PubMed ID: 12715885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and optimization of sequence-specific hairpin ribozymes.
    Romero-López C; Barroso-delJesus A; Puerta-Fernández E; Berzal-Herranz A
    Methods Mol Biol; 2004; 252():327-38. PubMed ID: 15017061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world.
    Vlassov AV; Johnston BH; Landweber LF; Kazakov SA
    Nucleic Acids Res; 2004; 32(9):2966-74. PubMed ID: 15161960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor.
    Komatsu Y; Yamashita S; Kazama N; Nobuoka K; Ohtsuka E
    J Mol Biol; 2000 Jun; 299(5):1231-43. PubMed ID: 10873448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reporter ribozymes for real-time analysis of domain-specific interactions in biomolecules: HIV-1 reverse transcriptase and the primer-template complex.
    Hartig JS; Famulok M
    Angew Chem Int Ed Engl; 2002 Nov; 41(22):4263-6. PubMed ID: 12434357
    [No Abstract]   [Full Text] [Related]  

  • 34. A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA.
    Flinders J; Dieckmann T
    J Mol Biol; 2001 May; 308(4):665-79. PubMed ID: 11350168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using fluorescence resonance energy transfer to investigate hammerhead ribozyme kinetics.
    Perkins TA; Goodchild J
    Methods Mol Biol; 1997; 74():241-51. PubMed ID: 9204439
    [No Abstract]   [Full Text] [Related]  

  • 36. Regulation of ribozyme cleavage activity by oligonucleotides.
    Komatsu Y; Ohtsuka E
    Methods Mol Biol; 2004; 252():165-77. PubMed ID: 15017048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation and application of asymmetric hammerhead ribozymes.
    Hammann C; Tabler M
    Methods; 1999 Jul; 18(3):273-80. PubMed ID: 10454985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic studies on acyl-transferase ribozymes and beyond.
    Hodgson DR; Suga H
    Biopolymers; 2004 Jan; 73(1):130-50. PubMed ID: 14691945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the conserved P9-G10.1 metal-binding motif in hammerhead ribozymes with an extra nucleotide inserted between A9 and G10.1 residues.
    Warashina M; Kuwabara T; Nakamatsu Y; Takagi Y; Kato Y; Taira K
    J Am Chem Soc; 2004 Oct; 126(39):12291-7. PubMed ID: 15453762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of activities between hammerhead ribozymes and DNA enzymes targeted to L6 BCR-ABL chimeric (b2a2) mRNA.
    Warashina M; Kuwabara T; Taira K
    Nucleic Acids Symp Ser; 1997; (37):213-4. PubMed ID: 9586075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.