These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9204490)

  • 1. Attention and oculomotor control: a high-density ERP study of the gap effect.
    Csibra G; Johnson MH; Tucker LA
    Neuropsychologia; 1997 Jun; 35(6):855-65. PubMed ID: 9204490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Cortical slow negative potentials during eye fixation and preparing of visually triggered saccades in a man].
    Slavutskaia MV; Shul'govskiĭ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):551-62. PubMed ID: 12449832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of blinks on horizontal saccade and smooth pursuit initiation in humans.
    Rambold H; El Baz I; Helmchen C
    Exp Brain Res; 2004 Jun; 156(3):314-24. PubMed ID: 14968272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory and motor attentional modulation during the manual gap effect in humans: a high-density ERP study.
    Gómez CM; Delinte A; Vaquero E; Atienza M; Cantero JL; Vazquez M; Crommelinck M; Roucoux A
    Exp Brain Res; 2002 Feb; 142(3):385-94. PubMed ID: 11819047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks.
    Goldring J; Fischer B
    Exp Brain Res; 1997 Jan; 113(1):88-103. PubMed ID: 9028778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching between gap and overlap pro-saccades: cost or benefit?
    Vernet M; Yang Q; Gruselle M; Trams M; Kapoula Z
    Exp Brain Res; 2009 Jul; 197(1):49-58. PubMed ID: 19526227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI.
    DeSouza JF; Menon RS; Everling S
    J Neurophysiol; 2003 Feb; 89(2):1016-23. PubMed ID: 12574477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical visual processing is dependent on the oculomotor system.
    Weber B; Schwarz U; Kneifel S; Treyer V; Buck A
    Neuroreport; 2000 Feb; 11(2):241-7. PubMed ID: 10674463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Right visual field advantage in parafoveal processing: evidence from eye-fixation-related potentials.
    Simola J; Holmqvist K; Lindgren M
    Brain Lang; 2009 Nov; 111(2):101-13. PubMed ID: 19782390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effector-specific fields for motor preparation in the human frontal cortex.
    Connolly JD; Goodale MA; Cant JS; Munoz DP
    Neuroimage; 2007 Feb; 34(3):1209-19. PubMed ID: 17134914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological correlate of fixation disengagement in the primate's frontal eye field.
    Dias EC; Bruce CJ
    J Neurophysiol; 1994 Nov; 72(5):2532-7. PubMed ID: 7884478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Positive potentials of the human brain at different stages of preparation of a visually triggered saccade].
    Slavutskaia MV; Shul'govskiĭ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(3):341-50. PubMed ID: 12889207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressive interactions underlying visually evoked fixational saccades.
    Wang HX; Yuval-Greenberg S; Heeger DJ
    Vision Res; 2016 Jan; 118():70-82. PubMed ID: 25645962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-related potentials and saccadic reaction times: effects of fixation point offset or change.
    Spantekow A; Krappmann P; Everling S; Flohr H
    Exp Brain Res; 1999 Aug; 127(3):291-7. PubMed ID: 10452216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual-tactile spatial interaction in saccade generation.
    Diederich A; Colonius H; Bockhorst D; Tabeling S
    Exp Brain Res; 2003 Feb; 148(3):328-37. PubMed ID: 12541144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of oculomotor and visual activities in the primate pedunculopontine tegmental nucleus during visually guided saccade tasks.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2009 Dec; 30(11):2211-23. PubMed ID: 20128856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG activity related to preparation and suppression of eye movements in three-dimensional space.
    Tzelepi A; Lutz A; Kapoula Z
    Exp Brain Res; 2004 Apr; 155(4):439-49. PubMed ID: 14730413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.