These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 920452)
21. Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development. Sun GY; Yau TM J Neurochem; 1976 Feb; 26(2):291-5. PubMed ID: 1255192 [No Abstract] [Full Text] [Related]
22. [Biosynthesis of saturated and unsaturated higher fatty acids in normal structures]. Alimova EK; Astvatsatur'ian AT; Kostromitina LI; Shepelev AP Usp Sovrem Biol; 1972; 74(3):343-67. PubMed ID: 4348884 [No Abstract] [Full Text] [Related]
23. Nervonic acid biosynthesis by erucyl-CoA elongation in normal and quaking mouse brain microsomes. Elongation of other unsaturated fatty acyl-CoAs (mono and poly-unsaturated). Bourre JM; Daudu O; Baumann N Biochim Biophys Acta; 1976 Jan; 424(1):1-7. PubMed ID: 175848 [TBL] [Abstract][Full Text] [Related]
24. Alpha hydroxylation of lignoceric acid to cerebronic acid during brain development. Diminished hydroxylase activity in myelin-deficient mouse mutants. Murad S; Kishimoto Y J Biol Chem; 1975 Aug; 250(15):5841-6. PubMed ID: 1150661 [TBL] [Abstract][Full Text] [Related]
25. Biosynthesis of the myelin sheath. In: lipids, malnutrition & the developing brain. Davison AN Ciba Found Symp; 1971; ():73-90. PubMed ID: 4121674 [No Abstract] [Full Text] [Related]
26. Characteristics of synthesis of very-long-chain saturated and tetraenoic fatty acids in swine cerebral microsomes. Yoshida S; Takeshita M J Neurochem; 1986 May; 46(5):1353-8. PubMed ID: 3958710 [TBL] [Abstract][Full Text] [Related]
27. Is there a blood-brain relationship for saturated fatty acids during development? Bourre JM; Gozlan-Devillierre N; Daudu O; Baumann N Biol Neonate; 1978; 34(3-4):182-6. PubMed ID: 737240 [TBL] [Abstract][Full Text] [Related]
28. Lipids and development of the human brain. Crawford MA Biochem Soc Trans; 1976; 4(2):231-3. PubMed ID: 1001654 [No Abstract] [Full Text] [Related]
29. [Effect of thyrotoxicosis on lipid fatty acid composition in various subcellular fractions of the rat brain]. Bliudzin IuA; Vilkova VA; Zakharova LI Vopr Med Khim; 1991; 37(5):63-6. PubMed ID: 1759403 [TBL] [Abstract][Full Text] [Related]
30. Composition and metabolism of myelin phosphoglycerides during maturation and aging. Horrocks LA Prog Brain Res; 1973; 40(0):383-95. PubMed ID: 4608870 [No Abstract] [Full Text] [Related]
31. In vivo desaturation of [1-14C]stearate in the developing mouse brain. Wise RW; MacQuarrie R; Sun GY J Neurochem; 1979 Jul; 33(1):351-4. PubMed ID: 458462 [No Abstract] [Full Text] [Related]
32. Metabolism of phosphatidylcholine in the central nervous system. Soto EF; Najle R; de Raveglia IF; Pasquini JM Adv Exp Med Biol; 1977; 83():345-60. PubMed ID: 920468 [No Abstract] [Full Text] [Related]
33. [Biochemical aspects of myelinogenesis in the peripheral nervous system]. Cassagne C; Darriet D; Boiron F; Larrouquère-Régnier S; Bourre JM C R Seances Soc Biol Fil; 1980; 174(4):387-99. PubMed ID: 6449229 [TBL] [Abstract][Full Text] [Related]
34. A low degree of fatty acid unsaturation leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica). Gutiérrez AM; Reboredo GR; Mosca SM; Catalá A Mol Cell Biochem; 2006 Jan; 282(1-2):109-15. PubMed ID: 16317518 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of chain elongated-desaturated fatty acids from palmitic acid by liver and brain microsomes during the development of the pig. Clandinin MT; Wong K; Hacker RR Comp Biochem Physiol B; 1985; 81(1):53-4. PubMed ID: 4017545 [TBL] [Abstract][Full Text] [Related]
36. Incorporation of lipids into subcellular fractions of brain of quaking mutant. Albers-Jackson B; Greenfield S; Brostoff SW; Hogan EL J Neurochem; 1978 Sep; 31(3):571-6. PubMed ID: 681940 [No Abstract] [Full Text] [Related]
37. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. Tvrdik P; Westerberg R; Silve S; Asadi A; Jakobsson A; Cannon B; Loison G; Jacobsson A J Cell Biol; 2000 May; 149(3):707-18. PubMed ID: 10791983 [TBL] [Abstract][Full Text] [Related]
38. Effects of essential fatty acid deficiency on myelin and various subcellular structures in rat brain. Galli C; Trzeciak HI; Paoletti R J Neurochem; 1972 Aug; 19(8):1863-7. PubMed ID: 5047850 [No Abstract] [Full Text] [Related]
39. Alterations induced by chronic ethanol treatment on lipid composition of microsomes, mitochondria and myelin from neonatal chick liver and brain. Marco C; Ceacero F; Gonzalez-Pacanowska D; Garcia-Peregrin E; Segovia JL Biochem Int; 1986 Jan; 12(1):51-60. PubMed ID: 3947374 [TBL] [Abstract][Full Text] [Related]
40. The lipid composition of rat brain myelin and subcellular fractions during development. Cuzner ML; Davison AN Biochem J; 1968 Jan; 106(1):29-34. PubMed ID: 5721466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]