These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9204880)

  • 1. Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway.
    Cane DE; Chiu HT; Liang PH; Anderson KS
    Biochemistry; 1997 Jul; 36(27):8332-9. PubMed ID: 9204880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis.
    Cane DE; Xue Q; Fitzsimons BC
    Biochemistry; 1996 Sep; 35(38):12369-76. PubMed ID: 8823172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trichodiene synthase. Identification of active site residues by site-directed mutagenesis.
    Cane DE; Shim JH; Xue Q; Fitzsimons BC; Hohn TM
    Biochemistry; 1995 Feb; 34(8):2480-8. PubMed ID: 7873527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overproduction of soluble trichodiene synthase from Fusarium sporotrichioides in Escherichia coli.
    Cane DE; Wu Z; Oliver JS; Hohn TM
    Arch Biochem Biophys; 1993 Jan; 300(1):416-22. PubMed ID: 8424673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state study of recombinant sesquiterpene cyclases.
    Mathis JR; Back K; Starks C; Noel J; Poulter CD; Chappell J
    Biochemistry; 1997 Jul; 36(27):8340-8. PubMed ID: 9204881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichodiene synthase. Substrate specificity and inhibition.
    Cane DE; Yang G; Xue Q; Shim JH
    Biochemistry; 1995 Feb; 34(8):2471-9. PubMed ID: 7873526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring biosynthetic diversity with trichodiene synthase.
    Vedula LS; Zhao Y; Coates RM; Koyama T; Cane DE; Christianson DW
    Arch Biochem Biophys; 2007 Oct; 466(2):260-6. PubMed ID: 17678871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the cryptic allylic pyrophosphate isomerase activity of trichodiene synthase using the anomalous substrate 6,7-dihydrofarnesyl pyrophosphate.
    Cane DE; Pawlak JL; Horak RM
    Biochemistry; 1990 Jun; 29(23):5476-90. PubMed ID: 2386780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase.
    Benedict CR; Lu JL; Pettigrew DW; Liu J; Stipanovic RD; Williams HJ
    Plant Physiol; 2001 Apr; 125(4):1754-65. PubMed ID: 11299356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of cis-prenyltransferase reaction probed by substrate analogues.
    Lu YP; Liu HG; Teng KH; Liang PH
    Biochem Biophys Res Commun; 2010 Oct; 400(4):758-62. PubMed ID: 20828539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product distribution and pre-steady-state kinetic analysis of Escherichia coli undecaprenyl pyrophosphate synthase reaction.
    Pan JJ; Chiou ST; Liang PH
    Biochemistry; 2000 Sep; 39(35):10936-42. PubMed ID: 10978182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modes of inactivation of trichodiene synthase by a cyclopropane-containing farnesyldiphosphate analog.
    Hong YJ; Tantillo DJ
    Org Biomol Chem; 2009 Oct; 7(19):4101-9. PubMed ID: 19763318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release.
    Furfine ES; Leban JJ; Landavazo A; Moomaw JF; Casey PJ
    Biochemistry; 1995 May; 34(20):6857-62. PubMed ID: 7756316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity.
    Thulasiram HV; Poulter CD
    J Am Chem Soc; 2006 Dec; 128(49):15819-23. PubMed ID: 17147392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squalene synthase: steady-state, pre-steady-state, and isotope-trapping studies.
    Radisky ES; Poulter CD
    Biochemistry; 2000 Feb; 39(7):1748-60. PubMed ID: 10677224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorpha-4,11-diene synthase: mechanism and stereochemistry of the enzymatic cyclization of farnesyl diphosphate.
    Picaud S; Mercke P; He X; Sterner O; Brodelius M; Cane DE; Brodelius PE
    Arch Biochem Biophys; 2006 Apr; 448(1-2):150-5. PubMed ID: 16143293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2+B motif.
    Vedula LS; Jiang J; Zakharian T; Cane DE; Christianson DW
    Arch Biochem Biophys; 2008 Jan; 469(2):184-94. PubMed ID: 17996718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli chorismate synthase: a deuterium kinetic-isotope effect under single-turnover and steady-state conditions shows that a flavin intermediate forms before the C-(6proR)-H bond is cleaved.
    Bornemann S; Balasubramanian S; Coggins JR; Abell C; Lowe DJ; Thorneley RN
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):707-10. PubMed ID: 7848266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.