These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9205042)

  • 1. The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems.
    Buschbeck EK; Strausfeld NJ
    J Comp Neurol; 1997 Jul; 383(3):282-304. PubMed ID: 9205042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.
    Higgins CM; Douglass JK; Strausfeld NJ
    Vis Neurosci; 2004; 21(4):567-86. PubMed ID: 15579222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus.
    Medan V; Oliva D; Tomsic D
    J Neurophysiol; 2007 Oct; 98(4):2414-28. PubMed ID: 17715192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster.
    Joesch M; Plett J; Borst A; Reiff DF
    Curr Biol; 2008 Mar; 18(5):368-74. PubMed ID: 18328703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways.
    Strausfeld NJ; Gronenberg W
    J Comp Neurol; 1990 Dec; 302(4):954-72. PubMed ID: 1707069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila.
    Scott EK; Raabe T; Luo L
    J Comp Neurol; 2002 Dec; 454(4):470-81. PubMed ID: 12455010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of columnar inputs in the third optic ganglion of a highly visual crab.
    Bengochea M; Berón de Astrada M
    J Physiol Paris; 2014; 108(2-3):61-70. PubMed ID: 24929118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity constancy and models for wide-field visual motion detection in insects.
    Shoemaker PA; O'Carroll DC; Straw AD
    Biol Cybern; 2005 Oct; 93(4):275-87. PubMed ID: 16151841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sexual dimorphism in the hoverfly motion vision pathway.
    Nordström K; Barnett PD; Moyer de Miguel IM; Brinkworth RS; O'Carroll DC
    Curr Biol; 2008 May; 18(9):661-7. PubMed ID: 18450449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical neuroanatomy of the fly's movement detection pathway.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2004 Jan; 468(1):6-23. PubMed ID: 14648688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioural state affects motion-sensitive neurones in the fly visual system.
    Rosner R; Egelhaaf M; Warzecha AK
    J Exp Biol; 2010 Jan; 213(2):331-8. PubMed ID: 20038668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
    Barnett PD; Nordström K; O'carroll DC
    Curr Biol; 2007 Apr; 17(7):569-78. PubMed ID: 17363248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensity and motion responses of giant vertical neurons of the fly eye.
    Soohoo SL; Bishop LG
    J Neurobiol; 1980 Mar; 11(2):159-77. PubMed ID: 7381458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli.
    Okamura JY; Strausfeld NJ
    J Comp Neurol; 2007 Jan; 500(1):189-208. PubMed ID: 17099892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron.
    Farrow K; Haag J; Borst A
    Nat Neurosci; 2006 Oct; 9(10):1312-20. PubMed ID: 16964250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oculomotor control in calliphorid flies: organization of descending neurons to neck motor neurons responding to visual stimuli.
    Gronenberg W; Milde JJ; Strausfeld NJ
    J Comp Neurol; 1995 Oct; 361(2):267-84. PubMed ID: 8543662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "bright zone" in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity.
    Straw AD; Warrant EJ; O'Carroll DC
    J Exp Biol; 2006 Nov; 209(Pt 21):4339-54. PubMed ID: 17050849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.