BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9205046)

  • 1. Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs.
    Márin O; Smeets WJ; González A
    J Comp Neurol; 1997 Jul; 383(3):349-69. PubMed ID: 9205046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Feb; 378(1):50-69. PubMed ID: 9120054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens.
    Marín O; González A; Smeets WJ
    J Comp Neurol; 1997 Feb; 378(1):16-49. PubMed ID: 9120053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens.
    Marín O; González A; Smeets WJ
    J Comp Neurol; 1997 Mar; 380(1):23-50. PubMed ID: 9073081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians.
    Sánchez-Camacho C; Marín O; López JM; Moreno N; Smeets WJ; ten Donkelaar HJ; González A
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):325-30. PubMed ID: 11922982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord.
    Sánchez-Camacho C; Marín O; Smeets WJ; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):209-32. PubMed ID: 11331525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians.
    Moreno N; Morona R; López JM; Domínguez L; Joven A; Bandín S; González A
    J Comp Neurol; 2012 Feb; 520(2):330-63. PubMed ID: 21674496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians.
    Marín O; Smeets WJ; Muñoz M; Sanchez-Camacho C; Peña JJ; Lopez JM; González A
    Eur J Morphol; 1999 Apr; 37(2-3):155-9. PubMed ID: 10342448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferent connections of the nucleus accumbens of the snake, Elaphe guttata, studied by means of in vitro and in vivo tracing techniques in combination with TH immunohistochemistry.
    Perez-Santana L; Marín O; Smeets WJ
    Neurosci Lett; 1997 Apr; 225(2):101-4. PubMed ID: 9147384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the basal ganglia of amphibians: dopaminergic mesostriatal projections.
    González A; Muñoz M; Muñoz A; Marin O; Smeets WJ
    Eur J Morphol; 1994 Aug; 32(2-4):271-4. PubMed ID: 7803178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system.
    López JM; Morona R; González A
    J Chem Neuroanat; 2010 Dec; 40(4):325-38. PubMed ID: 20887782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent connections of the substantia nigra and ventral tegmental area in the rat.
    Beckstead RM; Domesick VB; Nauta WJ
    Brain Res; 1979 Oct; 175(2):191-217. PubMed ID: 314832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal raphe, substantia nigra and locus coeruleus: interconnections with each other and the neostriatum.
    Pasquier DA; Kemper TL; Forbes WB; Morgane PJ
    Brain Res Bull; 1977; 2(5):323-39. PubMed ID: 922511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hodological characterization of the medial amygdala in anuran amphibians.
    Moreno N; González A
    J Comp Neurol; 2003 Nov; 466(3):389-408. PubMed ID: 14556296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connections of the lobus inferior hypothalami of the clearnose skate Raja eglanteria (Chondrichthyes).
    Smeets WJ; Boord RL
    J Comp Neurol; 1985 Apr; 234(3):380-92. PubMed ID: 3988991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat.
    Hasue RH; Shammah-Lagnado SJ
    J Comp Neurol; 2002 Dec; 454(1):15-33. PubMed ID: 12410615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal ganglia organization in amphibians: chemoarchitecture.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1998 Mar; 392(3):285-312. PubMed ID: 9511919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal ganglia pathways to the tectum: the afferent and efferent connections of the lateral spiriform nucleus of pigeon.
    Reiner A; Brecha NC; Karten HJ
    J Comp Neurol; 1982 Jun; 208(1):16-36. PubMed ID: 7119152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.