These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9205716)

  • 1. Chromatic and monochromatic optical resolution in the rainbow trout.
    Jagger WS
    Vision Res; 1997 May; 37(10):1249-54. PubMed ID: 9205716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image formation by the crystalline lens and eye of the rainbow trout.
    Jagger WS
    Vision Res; 1996 Sep; 36(17):2641-55. PubMed ID: 8917751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of light sources with different spectral structures on ocular axial length in rainbow trout (Oncorhynchus mykiss).
    Timucin OB; Arabaci M; Cuce F; Karatas B; Onalan S; Yasar M; Yildirim S; Karadag MF
    Exp Eye Res; 2016 Oct; 151():212-21. PubMed ID: 27593912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet sensitivity in the torus semicircularis of juvenile rainbow trout (Oncorhynchus mykiss).
    Coughlin DJ; Hawryshyn CW
    Vision Res; 1994 Jun; 34(11):1407-13. PubMed ID: 8023450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.
    Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V
    Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration.
    Kröger RH; Wagner HJ
    J Comp Physiol A; 1996 Dec; 179(6):837-42. PubMed ID: 8956500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral sensitivity of single cones in rainbow trout (Oncorhynchus mykiss): a whole-cell voltage clamp study.
    Anderson LG; Sabbah S; Hawryshyn CW
    Vision Res; 2010 Sep; 50(20):2055-61. PubMed ID: 20655939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal processing and opponent mechanisms mediating ultraviolet polarization sensitivity in rainbow trout (Oncorhynchus mykiss).
    Ramsden SD; Anderson L; Mussi M; Kamermans M; Hawryshyn CW
    J Exp Biol; 2008 May; 211(Pt 9):1376-85. PubMed ID: 18424671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback from horizontal cells to cones mediates color induction and may facilitate color constancy in rainbow trout.
    Sabbah S; Zhu C; Hornsby MA; Kamermans M; Hawryshyn CW
    PLoS One; 2013; 8(6):e66216. PubMed ID: 23750282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout.
    Novales Flamarique I; Wachowiak M
    J Neurophysiol; 2015 Nov; 114(5):2703-17. PubMed ID: 26334009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality.
    Xu R; Wang H; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):481-492. PubMed ID: 28375317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of ultraviolet-sensitive cones in the retinal cone mosaic of thyroxin-challenged post-juvenile rainbow trout (Oncorhynchus mykiss).
    Hawryshyn CW; Martens G; Allison WT; Anholt BR
    J Exp Biol; 2003 Aug; 206(Pt 15):2665-73. PubMed ID: 12819272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ocular chromatic aberration on monocular visual performance.
    Thibos LN; Bradley A; Zhang XX
    Optom Vis Sci; 1991 Aug; 68(8):599-607. PubMed ID: 1923336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.
    Silveira LC; Saito CA; da Silva Filho M; Kremers J; Bowmaker JK; Lee BB
    PLoS One; 2014; 9(11):e113321. PubMed ID: 25405863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout.
    Jagger WS; Sands PJ
    Vision Res; 1996 Sep; 36(17):2623-39. PubMed ID: 8917750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Optics.
    Fernald RD; Wright SE
    Vision Res; 1985; 25(2):155-61. PubMed ID: 4013083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of chromatic aberration on visual acuity.
    Campbell FW; Gubisch RW
    J Physiol; 1967 Sep; 192(2):345-58. PubMed ID: 6050153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imperfect optics may be the eye's defence against chromatic blur.
    McLellan JS; Marcos S; Prieto PM; Burns SA
    Nature; 2002 May; 417(6885):174-6. PubMed ID: 12000960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.