These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9206981)

  • 1. Interactions between superoxide and nitric oxide: implications in DNA damage and mutagenesis.
    Jourd'heuil D; Kang D; Grisham MB
    Front Biosci; 1997 May; 2():d189-96. PubMed ID: 9206981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of superoxide on nitric oxide-dependent N-nitrosation reactions.
    Miles AM; Gibson MF; Kirshina M; Cook JC; Pacelli R; Wink D; Grisham MB
    Free Radic Res; 1995 Oct; 23(4):379-90. PubMed ID: 7493044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide.
    Miles AM; Bohle DS; Glassbrenner PA; Hansert B; Wink DA; Grisham MB
    J Biol Chem; 1996 Jan; 271(1):40-7. PubMed ID: 8550595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate.
    Jourd'heuil D; Miranda KM; Kim SM; Espey MG; Vodovotz Y; Laroux S; Mai CT; Miles AM; Grisham MB; Wink DA
    Arch Biochem Biophys; 1999 May; 365(1):92-100. PubMed ID: 10222043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress.
    Wink DA; Cook JA; Kim SY; Vodovotz Y; Pacelli R; Krishna MC; Russo A; Mitchell JB; Jourd'heuil D; Miles AM; Grisham MB
    J Biol Chem; 1997 Apr; 272(17):11147-51. PubMed ID: 9111012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrosation-modulating effect of ascorbate in a model dynamic system of coexisting nitric oxide and superoxide.
    Hu TM; Chen YJ
    Free Radic Res; 2010 May; 44(5):552-62. PubMed ID: 20187709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reactive oxygen and nitrogen species in inflammatory process].
    Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J
    Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide.
    Espey MG; Thomas DD; Miranda KM; Wink DA
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11127-32. PubMed ID: 12177414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitric oxide on hemoprotein-catalyzed oxidative reactions.
    Jourd'heuil D; Mills L; Miles AM; Grisham MB
    Nitric Oxide; 1998; 2(1):37-44. PubMed ID: 9706741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide and oxygen radicals in infection, inflammation, and cancer.
    Maeda H; Akaike T
    Biochemistry (Mosc); 1998 Jul; 63(7):854-65. PubMed ID: 9721338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe.
    Damasceno FC; Facci RR; da Silva TM; Toledo JC
    Free Radic Biol Med; 2014 Dec; 77():270-80. PubMed ID: 25242205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide-dependent N-nitrosating activity of rat pleural mesothelial cells.
    Owens MW; Milligan SA; Grisham MB
    Free Radic Res; 1995 Oct; 23(4):371-8. PubMed ID: 7493043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source.
    Damasceno FC; Condeles AL; Lopes AKB; Facci RR; Linares E; Truzzi DR; Augusto O; Toledo JC
    J Biol Chem; 2018 Jun; 293(22):8530-8542. PubMed ID: 29661935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A discussion of the chemistry of oxidative and nitrosative stress in cytotoxicity.
    Miranda KM; Espey MG; Wink DA
    J Inorg Biochem; 2000 Apr; 79(1-4):237-40. PubMed ID: 10830872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
    Dong M; Vongchampa V; Gingipalli L; Cloutier JF; Kow YW; O'Connor T; Dedon PC
    Mutat Res; 2006 Feb; 594(1-2):120-34. PubMed ID: 16274707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity and dissimilarity of thiols as anti-nitrosative agents in the nitric oxide-superoxide system.
    Hu TM; Ho SC
    Biochem Biophys Res Commun; 2011 Jan; 404(3):785-9. PubMed ID: 21168387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemin potentiates nitric oxide-mediated nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline.
    Lakshmi VM; Clapper ML; Chang WC; Zenser TV
    Chem Res Toxicol; 2005 Mar; 18(3):528-35. PubMed ID: 15777093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the reactions of .NO with superoxide and oxygen in biological systems: a kinetic approach.
    Czapski G; Goldstein S
    Free Radic Biol Med; 1995 Dec; 19(6):785-94. PubMed ID: 8582651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide.
    Squadrito GL; Pryor WA
    Free Radic Biol Med; 1998 Sep; 25(4-5):392-403. PubMed ID: 9741578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide fluxes limit nitric oxide-induced signaling.
    Thomas DD; Ridnour LA; Espey MG; Donzelli S; Ambs S; Hussain SP; Harris CC; DeGraff W; Roberts DD; Mitchell JB; Wink DA
    J Biol Chem; 2006 Sep; 281(36):25984-93. PubMed ID: 16829532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.