These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9207629)

  • 21. Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism.
    Nikolaidis LA; Doverspike A; Huerbin R; Hentosz T; Shannon RP
    Circulation; 2002 Jun; 105(23):2785-90. PubMed ID: 12057995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers synergistically increase coronary blood flow in canine ischemic myocardium: role of bradykinin.
    Kitakaze M; Asanuma H; Funaya H; Node K; Takashima S; Sanada S; Asakura M; Ogita H; Kim J; Hori M
    J Am Coll Cardiol; 2002 Jul; 40(1):162-6. PubMed ID: 12103271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased tissue angiotensin-converting enzyme activity impairs bradykinin-induced dilation of coronary arterioles in obesity.
    Feher A; Cassuto J; Szabo A; Patel V; Vinayak Kamath M; Bagi Z
    Circ J; 2013; 77(7):1867-76. PubMed ID: 23603844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.
    Dube S; Canty JM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2581-90. PubMed ID: 11356613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bradykinin-induced vasodilation is impaired at the atherosclerotic site but is preserved at the spastic site of human coronary arteries in vivo.
    Kuga T; Egashira K; Mohri M; Tsutsui H; Harasawa Y; Urabe Y; Ando S; Shimokawa H; Takeshita A
    Circulation; 1995 Jul; 92(2):183-9. PubMed ID: 7600649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo. Intravascular two-dimensional and Doppler ultrasound studies.
    Sudhir K; MacGregor JS; Gupta M; Barbant SD; Redberg R; Yock PG; Chatterjee K
    Circulation; 1993 Mar; 87(3):931-8. PubMed ID: 8383016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between flow-mediated brachial artery vasodilation and coronary vasomotor responses to bradykinin: comparison with those to acetylcholine.
    Matsuo S; Matsumoto T; Takashima H; Ohira N; Yamane T; Yasuda Y; Tarutani Y; Horie M
    J Cardiovasc Pharmacol; 2004 Aug; 44(2):164-70. PubMed ID: 15243296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Captopril reverses the reduced vasodilator response to bradykinin in hypertensive pregnant rats.
    Resende AC; Pimentel AM; de Moura RS
    Clin Exp Pharmacol Physiol; 2004 Nov; 31(11):756-61. PubMed ID: 15566389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leptin causes nitric-oxide independent coronary artery vasodilation in humans.
    Matsuda K; Teragawa H; Fukuda Y; Nakagawa K; Higashi Y; Chayama K
    Hypertens Res; 2003 Feb; 26(2):147-52. PubMed ID: 12627874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-NAME-resistant bradykinin-induced relaxation in porcine coronary arteries is NO-dependent: effect of ACE inhibition.
    Danser AH; Tom B; de Vries R; Saxena PR
    Br J Pharmacol; 2000 Sep; 131(2):195-202. PubMed ID: 10991911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coronary vasodilation to acetylcholine, adenosine and bradykinin in dogs: effects of inhibition of NO-synthesis and captopril.
    Zanzinger J; Bassenge E
    Eur Heart J; 1993 Nov; 14 Suppl I():164-8. PubMed ID: 8293769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adrenomedullin causes coronary vasodilation in humans: effects of inhibition of nitric oxide synthesis.
    Ueda K; Teragawa H; Kimura M; Matsuda K; Higashi Y; Yamagata T; Oshima T; Yoshizumi M; Chayama K
    J Cardiovasc Pharmacol; 2005 Oct; 46(4):534-9. PubMed ID: 16160609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide production by coronary conductance and resistance vessels in hypercholesterolemia patients.
    Shiode N; Nakayama K; Morishima N; Yamagata T; Matsuura H; Kajiyama G
    Am Heart J; 1996 Jun; 131(6):1051-7. PubMed ID: 8644581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potentiation of endothelium-dependent relaxations to bradykinin by angiotensin I converting enzyme inhibitors in canine coronary artery involves both endothelium-derived relaxing and hyperpolarizing factors.
    Mombouli JV; Illiano S; Nagao T; Scott-Burden T; Vanhoutte PM
    Circ Res; 1992 Jul; 71(1):137-44. PubMed ID: 1318793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs.
    Canty JM; Schwartz JS
    Circulation; 1994 Jan; 89(1):375-84. PubMed ID: 8281673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery.
    Gorelik G; Carbini LA; Scicli AG
    J Pharmacol Exp Ther; 1998 Jul; 286(1):403-10. PubMed ID: 9655885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of nitric oxide in coronary arterial vasomotion and the influence of coronary atherosclerosis and its risks.
    Goodhart DM; Anderson TJ
    Am J Cardiol; 1998 Nov; 82(9):1034-9. PubMed ID: 9817477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells.
    Minshall RD; Tan F; Nakamura F; Rabito SF; Becker RP; Marcic B; Erdös EG
    Circ Res; 1997 Nov; 81(5):848-56. PubMed ID: 9351459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of enalaprilat on nitric oxide activity in coronary artery disease.
    Prasad A; Husain S; Quyyumi AA
    Am J Cardiol; 1999 Jul; 84(1):1-6. PubMed ID: 10404842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.