These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9208409)
1. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Sie LT; van der Knaap MS; van Wezel-Meijler G; Valk J Neuropediatrics; 1997 Apr; 28(2):97-105. PubMed ID: 9208409 [TBL] [Abstract][Full Text] [Related]
2. Early myelination patterns in the brainstem auditory nuclei and pathway: MRI evaluation study. Sano M; Kaga K; Kuan CC; Ino K; Mima K Int J Pediatr Otorhinolaryngol; 2007 Jul; 71(7):1105-15. PubMed ID: 17485121 [TBL] [Abstract][Full Text] [Related]
3. [Normal myelination in childhood brains using MRI--a meta analysis]. Staudt M; Krägeloh-Mann I; Grodd W Rofo; 2000 Oct; 172(10):802-11. PubMed ID: 11111291 [TBL] [Abstract][Full Text] [Related]
4. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment. Su P; Kuan CC; Kaga K; Sano M; Mima K Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1751-63. PubMed ID: 18849083 [TBL] [Abstract][Full Text] [Related]
5. Early myelination patterns in the central auditory pathway of the higher brain: MRI evaluation study. Sano M; Kuan CC; Kaga K; Itoh K; Ino K; Mima K Int J Pediatr Otorhinolaryngol; 2008 Oct; 72(10):1479-86. PubMed ID: 18676030 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging of the brain in premature infants during the neonatal period. Normal phenomena and reflection of mild ultrasound abnormalities. van Wezel-Meijler G; van der Knaap MS; Sie LT; Oosting J; van Amerongen AH; Cranendonk A; Lafeber HN Neuropediatrics; 1998 Apr; 29(2):89-96. PubMed ID: 9638663 [TBL] [Abstract][Full Text] [Related]
7. MR imaging assessment of myelination in the very preterm brain. Counsell SJ; Maalouf EF; Fletcher AM; Duggan P; Battin M; Lewis HJ; Herlihy AH; Edwards AD; Bydder GM; Rutherford MA AJNR Am J Neuroradiol; 2002 May; 23(5):872-81. PubMed ID: 12006296 [TBL] [Abstract][Full Text] [Related]
8. Does very preterm birth impair myelination of the central nervous system? van de Bor M; Guit GL; Schreuder AM; van Bel F; Wondergem J; den Ouden L; Vielvoye GJ Neuropediatrics; 1990 Feb; 21(1):37-9. PubMed ID: 2107455 [TBL] [Abstract][Full Text] [Related]
9. MR imaging of the developing human brain. Part 2. Postnatal development. Ballesteros MC; Hansen PE; Soila K Radiographics; 1993 May; 13(3):611-22. PubMed ID: 8316668 [TBL] [Abstract][Full Text] [Related]
10. [Diagnostic imaging of brain maturation in premature infants]. van Wezel-Meijler G; van der Knaap MS Ned Tijdschr Geneeskd; 2001 Mar; 145(9):410-7. PubMed ID: 11253495 [TBL] [Abstract][Full Text] [Related]
11. Regional brain development in serial magnetic resonance imaging of low-risk preterm infants. Mewes AU; Hüppi PS; Als H; Rybicki FJ; Inder TE; McAnulty GB; Mulkern RV; Robertson RL; Rivkin MJ; Warfield SK Pediatrics; 2006 Jul; 118(1):23-33. PubMed ID: 16818545 [TBL] [Abstract][Full Text] [Related]
12. Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging. De Vries LS; Van der Grond J; Van Haastert IC; Groenendaal F Neuropediatrics; 2005 Feb; 36(1):12-20. PubMed ID: 15776318 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Nanba Y; Matsui K; Aida N; Sato Y; Toyoshima K; Kawataki M; Hoshino R; Ohyama M; Itani Y; Goto A; Oka A Pediatrics; 2007 Jul; 120(1):e10-9. PubMed ID: 17606537 [TBL] [Abstract][Full Text] [Related]
14. Apparent diffusion coefficient on magnetic resonance imaging in pons and in corona radiata and relation with the neurophysiologic measurement and the outcome in very preterm infants. Kaukola T; Perhomaa M; Vainionpaa L; Tolonen U; Jauhiainen J; Paakko E; Hallman M Neonatology; 2010; 97(1):15-21. PubMed ID: 19571583 [TBL] [Abstract][Full Text] [Related]
16. Prominent signal intensity of T1/T2 prolongation in subcortical white matter of the anterior temporal region on conventional screening MRI of late preterm infants with normal development. Wuttikul C; Taoka T; Akashi T; Nakagawa H; Miyasaka T; Sakamoto M; Takayama K; Wada T; Kitano S; Takahama J; Marugami N; Kichikawa K Magn Reson Imaging; 2008 Dec; 26(10):1374-80. PubMed ID: 18562147 [TBL] [Abstract][Full Text] [Related]
17. Myelin in SIDS: assessment of development and damage using MRI. Lamont P; Sachinwalla T; Pamphlett R Pediatrics; 1995 Mar; 95(3):409-13. PubMed ID: 7862482 [TBL] [Abstract][Full Text] [Related]
18. Late gestation cerebellar growth is rapid and impeded by premature birth. Limperopoulos C; Soul JS; Gauvreau K; Huppi PS; Warfield SK; Bassan H; Robertson RL; Volpe JJ; du Plessis AJ Pediatrics; 2005 Mar; 115(3):688-95. PubMed ID: 15741373 [TBL] [Abstract][Full Text] [Related]
19. [The MR evaluation of normal children and disorders of neuronal migration and myelination]. Miyamachi K; Miyasaka K; Abe H No To Shinkei; 1990 Feb; 42(2):183-8. PubMed ID: 2357420 [TBL] [Abstract][Full Text] [Related]
20. Semiquantitative assessment of myelination using magnetic resonance imaging in normal fetal brains. Abe S; Takagi K; Yamamoto T; Okuhata Y; Kato T Prenat Diagn; 2004 May; 24(5):352-7. PubMed ID: 15164408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]