BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9208431)

  • 1. Endothelium-derived relaxing factor as a mediator of bradykinin-induced perinatal pulmonary vasodilatation in fetal sheep.
    Glasgow RE; Buga GM; Ignarro LJ; Chaudhuri G; Heymann MA
    Reprod Fertil Dev; 1997; 9(2):213-6. PubMed ID: 9208431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of endothelium removal on prostaglandin and nitric oxide function in pulmonary resistance arteries in the lamb.
    Theis JG; Toyoda O; Coceani F
    Can J Physiol Pharmacol; 1998 Feb; 76(2):182-7. PubMed ID: 9635158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bradykinin produces pulmonary vasodilation in fetal lambs: role of prostaglandin production.
    Frantz E; Soifer SJ; Clyman RI; Heymann MA
    J Appl Physiol (1985); 1989 Oct; 67(4):1512-7. PubMed ID: 2507510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-derived relaxing factor: presence in pulmonary and systemic arteries of the newborn guinea pig.
    Davidson D; Eldemerdash A
    Pediatr Res; 1990 Feb; 27(2):128-32. PubMed ID: 2107513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDRF in pulmonary resistance vessels from fetal lamb: stimulation by oxygen and bradykinin.
    Wang Y; Coceani F
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H936-43. PubMed ID: 8160841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different involvement of endothelium-derived relaxing factor and prostacyclin in vasodilator response to bradykinin in isolated dog blood vessels.
    Okamura T; Toda N
    Adv Exp Med Biol; 1989; 247A():429-34. PubMed ID: 2513706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-derived relaxing factor released from cultured cells: differentiation from nitric oxide.
    Dusting GJ; Read MA; Stewart AG
    Clin Exp Pharmacol Physiol; 1988 Feb; 15(2):83-92. PubMed ID: 3271606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bradykinin in the rat isolated perfused heart: role of kinin receptors and endothelium-derived relaxing factor.
    Baydoun AR; Woodward B
    Br J Pharmacol; 1991 Jul; 103(3):1829-33. PubMed ID: 1657268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the pulmonary circulation in the fetus and during the transitional period to air breathing.
    Heymann MA
    Eur J Obstet Gynecol Reprod Biol; 1999 Jun; 84(2):127-32. PubMed ID: 10428335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells.
    Gryglewski RJ; Moncada S; Palmer RM
    Br J Pharmacol; 1986 Apr; 87(4):685-94. PubMed ID: 3085757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different patterns of release of endothelium-derived relaxing factor and prostacyclin.
    Mitchell JA; de Nucci G; Warner TD; Vane JR
    Br J Pharmacol; 1992 Feb; 105(2):485-9. PubMed ID: 1373103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelium-derived relaxing factor and nitric oxide possess identical pharmacologic properties as relaxants of bovine arterial and venous smooth muscle.
    Ignarro LJ; Buga GM; Byrns RE; Wood KS; Chaudhuri G
    J Pharmacol Exp Ther; 1988 Jul; 246(1):218-26. PubMed ID: 2839663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of endothelial prostacyclin and nitric oxide in peripheral and pulmonary circulation.
    Gryglewski RJ; Chłopicki S; Uracz W; Marcinkiewicz E
    Med Sci Monit; 2001; 7(1):1-16. PubMed ID: 11208485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoflurane anesthesia attenuates endothelium-dependent pulmonary vasorelaxation by inhibiting the synergistic interaction between nitric oxide and prostacyclin.
    Gambone LM; Murray PA; Flavahan NA
    Anesthesiology; 1997 Apr; 86(4):936-44. PubMed ID: 9105238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and actions of human umbilical endothelium derived relaxing factor.
    Chaudhuri G; Buga GM; Gold ME; Wood KS; Ignarro LJ
    Br J Pharmacol; 1991 Feb; 102(2):331-6. PubMed ID: 1849765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDRF generation and release from perfused bovine pulmonary artery and vein.
    Ignarro LJ; Buga GM; Chaudhuri G
    Eur J Pharmacol; 1988 Apr; 149(1-2):79-88. PubMed ID: 3135198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bradykinin-induced, N omega-nitro-L-arginine-insensitive endothelium-dependent relaxation of porcine coronary arteries is not mediated by bioassayable relaxing substances.
    Kauser K; Rubanyi GM
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S101-4. PubMed ID: 1282939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of endothelium-derived relaxing factor--nitric oxide in the lamb ductus arteriosus.
    Coceani F; Kelsey L; Seidlitz E
    Can J Physiol Pharmacol; 1994 Jan; 72(1):82-8. PubMed ID: 8012902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet inhibition by endothelium-derived relaxing factor from the rabbit perfused aorta.
    Bult H; Fret HR; Van den Bossche RM; Herman AG
    Br J Pharmacol; 1988 Dec; 95(4):1308-14. PubMed ID: 3064856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different involvement of nitric oxide in endothelium-dependent relaxation of porcine pulmonary artery and vein: influence of hypoxia.
    Félétou M; Girard V; Canet E
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):665-73. PubMed ID: 7596137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.