These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 9209719)
1. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Vollrath L; Spessert R; Kratzsch T; Keiner M; Hollmann H Bioelectromagnetics; 1997; 18(5):376-87. PubMed ID: 9209719 [TBL] [Abstract][Full Text] [Related]
2. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands. Sukhotina I; Streckert JR; Bitz AK; Hansen VW; Lerchl A J Pineal Res; 2006 Jan; 40(1):86-91. PubMed ID: 16313503 [TBL] [Abstract][Full Text] [Related]
3. Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus). Lerchl A; Krüger H; Niehaus M; Streckert JR; Bitz AK; Hansen V J Pineal Res; 2008 Apr; 44(3):267-72. PubMed ID: 18339122 [TBL] [Abstract][Full Text] [Related]
4. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. Reiter RJ J Cell Biochem; 1993 Apr; 51(4):394-403. PubMed ID: 8098713 [TBL] [Abstract][Full Text] [Related]
5. p-Chlorophenylalanine treatment depresses the number of synaptic ribbon profiles in the rat pineal gland, but does not abolish their day-night rhythm. Sousa Neto JA; Seidel A; Manz B; Vollrath L Ann Anat; 1995 Mar; 177(2):105-10. PubMed ID: 7741268 [TBL] [Abstract][Full Text] [Related]
6. (+)-N-allylnormetazocine enhances N-acetyltransferase activity and melatonin synthesis: preliminary evidence for a functional role of sigma receptors in the rat pineal gland. Steardo L; Monteleone P; d'Istria M; Serino I; Maj M; Cuomo V J Pharmacol Exp Ther; 1995 Nov; 275(2):845-9. PubMed ID: 7473175 [TBL] [Abstract][Full Text] [Related]
7. Inconsistent suppression of nocturnal pineal melatonin synthesis and serum melatonin levels in rats exposed to pulsed DC magnetic fields. Reiter RJ; Tan DX; Poeggeler B; Kavet R Bioelectromagnetics; 1998; 19(5):318-29. PubMed ID: 9669546 [TBL] [Abstract][Full Text] [Related]
8. Direct suppressive effects of weak magnetic fields (50 Hz and 16 2/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). Brendel H; Niehaus M; Lerchl A J Pineal Res; 2000 Nov; 29(4):228-33. PubMed ID: 11068945 [TBL] [Abstract][Full Text] [Related]
9. NTP Studies of Magnetic Field Promotion (DMBA Initiation) in Female Sprague-Dawley Rats (Whole-body Exposure/Gavage Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1999 Aug; 489():1-148. PubMed ID: 12563342 [TBL] [Abstract][Full Text] [Related]
10. Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod. Yaga K; Reiter RJ; Manchester LC; Nieves H; Sun JH; Chen LD Brain Res Bull; 1993; 30(1-2):153-6. PubMed ID: 8420625 [TBL] [Abstract][Full Text] [Related]
11. Exposure of female rats to a 100-microT 50 Hz magnetic field does not induce consistent changes in nocturnal levels of melatonin. Löscher W; Mevissen M; Lerchl A Radiat Res; 1998 Nov; 150(5):557-67. PubMed ID: 9806598 [TBL] [Abstract][Full Text] [Related]
12. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Hata K; Yamaguchi H; Tsurita G; Watanabe S; Wake K; Taki M; Ueno S; Nagawa H Bioelectromagnetics; 2005 Jan; 26(1):49-53. PubMed ID: 15605405 [TBL] [Abstract][Full Text] [Related]
13. Red-light-induced suppression of melatonin synthesis is mediated by N-methyl-D-aspartate receptor activation in retinally normal and retinally degenerate rats. Poeggeler BH; Barlow-Walden LR; Reiter RJ; Saarela S; Menendez-Pelaez A; Yaga K; Manchester LC; Chen LD; Tan DX J Neurobiol; 1995 Sep; 28(1):1-8. PubMed ID: 8586959 [TBL] [Abstract][Full Text] [Related]
14. Pineal 'synaptic ribbons' and serum melatonin levels in the rat following the pulse action of 52-Gs (50-Hz) magnetic fields: an evolutive analysis over 21 days. Martínez Soriano F; Giménez González M; Armañazas E; Ruiz Torner A Acta Anat (Basel); 1992; 143(4):289-93. PubMed ID: 1323903 [TBL] [Abstract][Full Text] [Related]
15. NTP Toxicity Studies of 60-Hz Magnetic Fields Administered by Whole Body Exposure to F344/N Rats, Sprague-Dawley Rats, and B6C3F1 Mice. Toxic Rep Ser; 1996 Sep; 58():1-B6. PubMed ID: 11986681 [TBL] [Abstract][Full Text] [Related]
16. Circularly polarised MF (500 micro T 50 Hz) does not acutely suppress melatonin secretion from cultured Wistar rat pineal glands. Tripp HM; Warman GR; Arendt J Bioelectromagnetics; 2003 Feb; 24(2):118-24. PubMed ID: 12524678 [TBL] [Abstract][Full Text] [Related]
17. A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes. Rosen LA; Barber I; Lyle DB Bioelectromagnetics; 1998; 19(2):123-7. PubMed ID: 9492170 [TBL] [Abstract][Full Text] [Related]
18. Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (Phodopus sungorus). Wilson BW; Matt KS; Morris JE; Sasser LB; Miller DL; Anderson LE Bioelectromagnetics; 1999; 20(4):224-32. PubMed ID: 10230936 [TBL] [Abstract][Full Text] [Related]
19. Growth retardation, testicular stimulation, and increased melatonin synthesis by weak magnetic fields (50 Hz) in Djungarian hamsters, Phodopus sungorus. Niehaus M; Brüggemeyer H; Behre HM; Lerchl A Biochem Biophys Res Commun; 1997 May; 234(3):707-11. PubMed ID: 9175780 [TBL] [Abstract][Full Text] [Related]
20. [The effect of various wave lengths of light and various duration of impulse times on suppression of n-acetyltransferase activity in the rat pineal gland]. Jarmak A; Zawilska JB; Nowak JZ Klin Oczna; 1998; 100(2):77-80. PubMed ID: 9695540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]