These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9209882)

  • 1. Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data.
    Wilke HJ; Krischak ST; Wenger KH; Claes LE
    Eur Spine J; 1997; 6(2):129-37. PubMed ID: 9209882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical comparison of calf and human spines.
    Wilke HJ; Krischak S; Claes L
    J Orthop Res; 1996 May; 14(3):500-3. PubMed ID: 8676264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior-segment Bilateral Facet Violation in Lumbar Transpedicular Fixation, Part III: A Biomechanical Study of Severe Violation.
    Xu Y; Le X; Zhang Q; Kuai S; Leng H; Duan F; Shi Z; Liu B; He D; Lang Z; Wu J; Wang L; Tian W
    Spine (Phila Pa 1976); 2020 May; 45(9):E508-E514. PubMed ID: 31770344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.
    Tencer AF; Hampton D; Eddy S
    Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are sheep spines a valid biomechanical model for human spines?
    Wilke HJ; Kettler A; Claes LE
    Spine (Phila Pa 1976); 1997 Oct; 22(20):2365-74. PubMed ID: 9355217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests?
    Kettler A; Liakos L; Haegele B; Wilke HJ
    Eur Spine J; 2007 Dec; 16(12):2186-92. PubMed ID: 17721711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical comparison of calf versus cadaver lumbar spine models.
    Riley LH; Eck JC; Yoshida H; Koh YD; You JW; Lim TH
    Spine (Phila Pa 1976); 2004 Jun; 29(11):E217-20. PubMed ID: 15167671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine.
    Wilke HJ; Geppert J; Kienle A
    Eur Spine J; 2011 Nov; 20(11):1859-68. PubMed ID: 21674213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine.
    Pflugmacher R; Schleicher P; Schaefer J; Scholz M; Ludwig K; Khodadadyan-Klostermann C; Haas NP; Kandziora F
    Spine (Phila Pa 1976); 2004 Jul; 29(13):1413-9. PubMed ID: 15223931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical studies of a dynamized anterior thoracolumbar implant.
    Hitchon PW; Goel VK; Rogge T; Grosland NM; Sairyo K; Torner J
    Spine (Phila Pa 1976); 2000 Feb; 25(3):306-9. PubMed ID: 10703101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of a ball-and-socket cervical disc prosthesis with cranial geometric center.
    Barrey C; Mosnier T; Jund J; Perrin G; Skalli W
    J Neurosurg Spine; 2009 Nov; 11(5):538-46. PubMed ID: 19929355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments.
    Busscher I; van der Veen AJ; van Dieën JH; Kingma I; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2010 Jan; 35(2):E35-42. PubMed ID: 20081499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments.
    Mannen EM; Friis EA; Sis HL; Wong BM; Cadel ES; Anderson DE
    J Mech Behav Biomed Mater; 2018 Aug; 84():258-264. PubMed ID: 29852313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiel-fixation preserves the non-linear load-deformation characteristic of spinal motion segments, but increases their flexibility.
    Wilke HJ; Werner K; Häussler K; Reinehr M; Böckers TM
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2133-7. PubMed ID: 22098913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage.
    Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA
    J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical in vitro evaluation of the kangaroo spine in comparison with human spinal data.
    Wilke HJ; Betz VM; Kienle A
    J Anat; 2023 Jul; 243(1):128-137. PubMed ID: 36929138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formalin fixation strongly influences biomechanical properties of the spine.
    Wilke HJ; Krischak S; Claes LE
    J Biomech; 1996 Dec; 29(12):1629-31. PubMed ID: 8945663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of compressive axial preload on the flexibility of the thoracolumbar spine.
    Tawackoli W; Marco R; Liebschner MA
    Spine (Phila Pa 1976); 2004 May; 29(9):988-93. PubMed ID: 15105669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.