BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9210346)

  • 1. 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens.
    Schuerman PL; Liu JS; Mou H; Dandekar AM
    Appl Microbiol Biotechnol; 1997 May; 47(5):560-5. PubMed ID: 9210346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-3-ketoglucosidase of Agrobacterium tumefaciens.
    Hayano K; Fukui S
    J Bacteriol; 1970 Mar; 101(3):692-7. PubMed ID: 5438043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase.
    Miyazaki R; Yamazaki T; Yoshimatsu K; Kojima K; Asano R; Sode K; Tsugawa W
    Bioelectrochemistry; 2018 Aug; 122():115-122. PubMed ID: 29625423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the formation and stability of D-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens.
    Kurowski WM; Fensom AH; Pirt SJ
    J Gen Microbiol; 1975 Oct; 90(2):191-202. PubMed ID: 1194891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens.
    Wächter R; Langhans M; Aloni R; Götz S; Weilmünster A; Koops A; Temguia L; Mistrik I; Pavlovkin J; Rascher U; Schwalm K; Koch KE; Ullrich CI
    Plant Physiol; 2003 Nov; 133(3):1024-37. PubMed ID: 14526106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A.
    Shi K; Cao M; Li C; Huang J; Zheng S; Wang G
    World J Microbiol Biotechnol; 2019 Jul; 35(8):115. PubMed ID: 31332542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Ketoglucose reductase of Agrobacterium tumefaciens.
    Hayano K; Tsubouchi Y; Fukui S
    J Bacteriol; 1973 Feb; 113(2):652-7. PubMed ID: 4144143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants of Agrobacterium tumefaciens virG gene that activate transcription of vir promoter in Escherichia coli.
    Jung YC; Gu Y; Wu D; Jin S
    Curr Microbiol; 2004 Nov; 49(5):334-40. PubMed ID: 15486707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression.
    Gray J; Wang J; Gelvin SB
    J Bacteriol; 1992 Feb; 174(4):1086-98. PubMed ID: 1735704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there any crosstalk between the chemotaxis and virulence induction signaling in Agrobacterium tumefaciens?
    Guo M; Huang Z; Yang J
    Biotechnol Adv; 2017 Jul; 35(4):505-511. PubMed ID: 28342941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar 3.
    Rodriguez-Palenzuela P; Burr TJ; Collmer A
    J Bacteriol; 1991 Oct; 173(20):6547-52. PubMed ID: 1655716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli.
    Lohrke SM; Yang H; Jin S
    J Bacteriol; 2001 Jun; 183(12):3704-11. PubMed ID: 11371534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid.
    Jones AL; Lai EM; Shirasu K; Kado CI
    J Bacteriol; 1996 Oct; 178(19):5706-11. PubMed ID: 8824616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58.
    Yoon SH; Moon TS; Iranpour P; Lanza AM; Prather KJ
    J Bacteriol; 2009 Mar; 191(5):1565-73. PubMed ID: 19060141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli.
    Kojima K; Tsugawa W; Sode K
    Biochem Biophys Res Commun; 2001 Mar; 282(1):21-7. PubMed ID: 11263965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected phytostimulatory behavior for Escherichia coli and Agrobacterium tumefaciens model strains.
    Walker V; Bruto M; Bellvert F; Bally R; Muller D; Prigent-Combaret C; Moënne-Loccoz Y; Comte G
    Mol Plant Microbe Interact; 2013 May; 26(5):495-502. PubMed ID: 23360460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive regulation of phenolic catabolism in Agrobacterium tumefaciens by the pcaQ gene in response to beta-carboxy-cis,cis-muconate.
    Parke D
    J Bacteriol; 1993 Jun; 175(11):3529-35. PubMed ID: 8501056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites.
    Gonzalez-Mula A; Lachat J; Mathias L; Naquin D; Lamouche F; Mergaert P; Faure D
    New Phytol; 2019 Apr; 222(1):455-467. PubMed ID: 30447163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CONVERSION OF DISACCHARIDES TO THE CORRESPONDING GLYCOSIDE-3-ULOSES BY INTACT CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S; HOCHSTER RM
    Can J Biochem Physiol; 1963 Nov; 41():2363-71. PubMed ID: 14089536
    [No Abstract]   [Full Text] [Related]  

  • 20. A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens.
    Schlüter A; Rüberg S; Krämer M; Weidner S; Priefer UB
    Mol Gen Genet; 1995 Apr; 247(2):206-15. PubMed ID: 7753030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.