BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9210346)

  • 21. A chemotaxis cluster from Agrobacterium tumefaciens.
    Wright EL; Deakin WJ; Shaw CH
    Gene; 1998 Oct; 220(1-2):83-9. PubMed ID: 9767126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association of enterohemolysin and non-fermentation of rhamnose and sucrose with Shiga-like toxin genes in Escherichia coli from calves.
    Wieler LH; Bauerfeind R; Weiss R; Pirro F; Baljer G
    Zentralbl Bakteriol; 1995 Apr; 282(3):265-74. PubMed ID: 7549158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of the dxs gene, encoding 1-deoxy-d-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens.
    Lee JK; Oh DK; Kim SY
    J Biotechnol; 2007 Feb; 128(3):555-66. PubMed ID: 17188774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trans-kingdom conjugation between Agrobacterium tumefaciens and Saccharomyces cerevisiae, a bacterium and a yeast.
    Sawasaki Y; Inomata K; Yoshida K
    Plant Cell Physiol; 1996 Jan; 37(1):103-6. PubMed ID: 8720926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and sequencing of the serine dehydrogenase gene from Agrobacterium tumefaciens.
    Fujisawa H; Nagata S; Chowdhury EK; Matsumoto M; Misono H
    Biosci Biotechnol Biochem; 2002 May; 66(5):1137-9. PubMed ID: 12092831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ntrA gene of Agrobacterium tumefaciens: identification, cloning, and phenotype of a site-directed mutant.
    Wu ZL; Charles TC; Wang H; Nester EW
    J Bacteriol; 1992 Apr; 174(8):2720-3. PubMed ID: 1556090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains.
    Hong SB; Hwang I; Dessaux Y; Guyon P; Kim KS; Farrand SK
    J Bacteriol; 1997 Aug; 179(15):4831-40. PubMed ID: 9244272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and sequencing of an Agrobacterium tumefaciens beta-glucosidase gene involved in modifying a vir-inducing plant signal molecule.
    Castle LA; Smith KD; Morris RO
    J Bacteriol; 1992 Mar; 174(5):1478-86. PubMed ID: 1537792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication of the broad-host-range plasmid RK2: isolation and characterization of a spontaneous deletion mutant that can replicate in Agrobacterium tumefaciens but not in Escherichia coli.
    Das A; Xie YH
    Mol Gen Genet; 1995 Feb; 246(3):309-15. PubMed ID: 7854315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning in Escherichia coli and molecular analysis of the sucrose system of the Salmonella plasmid SCR-53.
    García JL
    Mol Gen Genet; 1985; 201(3):575-7. PubMed ID: 3911031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TRANSFORMATION OF GLUCOSE TO 3-KETOGLUCOSE WITH THE CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S
    Biochem Biophys Res Commun; 1965 Jan; 18():186-91. PubMed ID: 14282016
    [No Abstract]   [Full Text] [Related]  

  • 32. The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways.
    Rossbach S; Schell J; de Bruijn FJ
    Mol Gen Genet; 1987 Oct; 209(3):419-26. PubMed ID: 17193704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic evidence for CheB- and CheR-dependent chemotaxis system in A. tumefaciens toward acetosyringone.
    Harighi B
    Microbiol Res; 2009; 164(6):634-41. PubMed ID: 19231145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation.
    Broer I; Dröge-Laser W; Barker RF; Neumann K; Klipp W; Pühler A
    Plant Mol Biol; 1995 Jan; 27(1):41-57. PubMed ID: 7865795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression and regulation of a Vibrio alginolyticus sucrose utilization system cloned in Escherichia coli.
    Scholle RR; Coyne VE; Maharaj R; Robb FT; Woods DR
    J Bacteriol; 1987 Jun; 169(6):2685-90. PubMed ID: 3034863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of a glucoside 3-dehydrogenase-producing strain, Sphingobacterium faecium, based on a high-throughput screening method and optimization of the culture conditions for enzyme production.
    Zhang J; Chen W; Ke W; Chen H
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3448-60. PubMed ID: 24532484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides.
    De Bruyn F; Van Brempt M; Maertens J; Van Bellegem W; Duchi D; De Mey M
    Microb Cell Fact; 2015 Sep; 14():138. PubMed ID: 26377568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon.
    Kemner JM; Liang X; Nester EW
    J Bacteriol; 1997 Apr; 179(7):2452-8. PubMed ID: 9079938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence.
    Mantis NJ; Winans SC
    J Bacteriol; 1993 Oct; 175(20):6626-36. PubMed ID: 8407840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.
    Kim KS; Farrand SK
    J Bacteriol; 1996 Jun; 178(11):3275-84. PubMed ID: 8655509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.