BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9210397)

  • 21. Substitutions of charged amino acid residues conserved in subunit I perturb the redox metal centers of the Escherichia coli bo-type ubiquinol oxidase.
    Kawasaki M; Mogi T; Anraku Y
    J Biochem; 1997 Aug; 122(2):422-9. PubMed ID: 9378723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli.
    Salerno JC; Bolgiano B; Poole RK; Gennis RB; Ingledew WJ
    J Biol Chem; 1990 Mar; 265(8):4364-8. PubMed ID: 2155226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel chloride-binding site modulates the heme-copper binuclear center of the Escherichia coli bo-type ubiquinol oxidase.
    Hirano T; Mogi T; Tsubaki M; Hori H; Orii Y; Anraku Y
    J Biochem; 1997 Aug; 122(2):430-7. PubMed ID: 9378724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of chimeric heme-copper respiratory oxidases using subunits I of Escherichia coli cytochrome b o and Halobacterium salinarium cytochrome aa3.
    Denda K; Mogi T; Anraku Y; Yamanaka T; Fukumori Y
    Biochem Biophys Res Commun; 1995 Dec; 217(2):428-36. PubMed ID: 7503718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel quinone-binding site in the cytochrome bo complex from Escherichia coli.
    Sato-Watanabe M; Mogi T; Ogura T; Kitagawa T; Miyoshi H; Iwamura H; Anraku Y
    J Biol Chem; 1994 Nov; 269(46):28908-12. PubMed ID: 7961852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme-copper site in cytochrome bo3, E. coli.
    Oganesyan VS; White GF; Field S; Marritt S; Gennis RB; Yap LL; Thomson AJ
    J Biol Inorg Chem; 2010 Nov; 15(8):1255-64. PubMed ID: 20623242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordination of CuB in reduced and CO-liganded states of cytochrome bo3 from Escherichia coli. Is chloride ion a cofactor?
    Ralle M; Verkhovskaya ML; Morgan JE; Verkhovsky MI; Wikström M; Blackburn NJ
    Biochemistry; 1999 Jun; 38(22):7185-94. PubMed ID: 10353829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The binding of cyanide and carbon monoxide to bacterial cytochrome bo.
    Mitchell R; Rich PR
    Biochem Soc Trans; 1994 Aug; 22(3):705-9. PubMed ID: 7821668
    [No Abstract]   [Full Text] [Related]  

  • 29. Cu XAS shows a change in the ligation of CuB upon reduction of cytochrome bo3 from Escherichia coli.
    Osborne JP; Cosper NJ; Stälhandske CM; Scott RA; Alben JO; Gennis RB
    Biochemistry; 1999 Apr; 38(14):4526-32. PubMed ID: 10194374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flash photolysis of the carbon monoxide compounds of wild-type and mutant variants of cytochrome bo from Escherichia coli.
    Brown S; Rumbley JN; Moody AJ; Thomas JW; Gennis RB; Rich PR
    Biochim Biophys Acta; 1994 Jan; 1183(3):521-32. PubMed ID: 8286401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier-transform infrared studies on azide-binding to the binuclear center of the Escherichia coli bo-type ubiquinol oxidase.
    Tsubaki M; Mogi T; Hori H
    FEBS Lett; 1999 Apr; 449(2-3):191-5. PubMed ID: 10338130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.
    Cheesman MR; Oganesyan VS; Watmough NJ; Butler CS; Thomson AJ
    J Am Chem Soc; 2004 Apr; 126(13):4157-66. PubMed ID: 15053605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The gateway to the active site of heme-copper oxidases.
    Lemon DD; Calhoun MW; Gennis RB; Woodruff WH
    Biochemistry; 1993 Nov; 32(45):11953-6. PubMed ID: 8218269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interconversion of fast and slow forms of cytochrome bo from Escherichia coli.
    Moody AJ; Cooper CE; Gennis RB; Rumbley JN; Rich PR
    Biochemistry; 1995 May; 34(20):6838-46. PubMed ID: 7756314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accommodation of two diatomic molecules in cytochrome bo: insights into NO reductase activity in terminal oxidases.
    Hayashi T; Lin MT; Ganesan K; Chen Y; Fee JA; Gennis RB; Moënne-Loccoz P
    Biochemistry; 2009 Feb; 48(5):883-90. PubMed ID: 19187032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome bo from Escherichia coli: reaction of the oxidized enzyme with hydrogen peroxide.
    Watmough NJ; Cheesman MR; Greenwood C; Thomson AJ
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):469-75. PubMed ID: 8002953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formate complex of the cytochrome bo quinol oxidase of Escherichia coli exhibits a 'g = 12' EPR feature analogous to that of 'slow' cytochrome oxidase.
    Calhoun MW; Gennis RB; Salerno JC
    FEBS Lett; 1992 Sep; 309(2):127-9. PubMed ID: 1324191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases.
    Mogi T
    J Biochem; 2009 May; 145(5):599-607. PubMed ID: 19174546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The distance between cytochromes a and a3 in the azide compound of bovine-heart cytochrome oxidase.
    Goodman G; Leigh JS
    Biochim Biophys Acta; 1987 Mar; 890(3):360-7. PubMed ID: 3028478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.