These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 9210460)
41. Inference of relationships in the 'twilight zone' of homology using a combination of bioinformatics and site-directed mutagenesis: a case study of restriction endonucleases Bsp6I and PvuII. Pawlak SD; Radlinska M; Chmiel AA; Bujnicki JM; Skowronek KJ Nucleic Acids Res; 2005; 33(2):661-71. PubMed ID: 15684412 [TBL] [Abstract][Full Text] [Related]
42. Five-stranded beta-sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Venclovas C; Timinskas A; Siksnys V Proteins; 1994 Nov; 20(3):279-82. PubMed ID: 7892176 [TBL] [Abstract][Full Text] [Related]
43. Structure of the multimodular endonuclease FokI bound to DNA. Wah DA; Hirsch JA; Dorner LF; Schildkraut I; Aggarwal AK Nature; 1997 Jul; 388(6637):97-100. PubMed ID: 9214510 [TBL] [Abstract][Full Text] [Related]
44. Hopping, jumping and looping by restriction enzymes. Halford SE Biochem Soc Trans; 2001 Aug; 29(Pt 4):363-74. PubMed ID: 11497991 [TBL] [Abstract][Full Text] [Related]
45. Engineering of variants of the restriction endonuclease EcoRV that depend in their cleavage activity on the flexibility of sequences flanking the recognition site. Wenz C; Hahn M; Pingoud A Biochemistry; 1998 Feb; 37(8):2234-42. PubMed ID: 9485369 [TBL] [Abstract][Full Text] [Related]
46. Reactions of type II restriction endonucleases with 8-base pair recognition sites. Bilcock DT; Daniels LE; Bath AJ; Halford SE J Biol Chem; 1999 Dec; 274(51):36379-86. PubMed ID: 10593932 [TBL] [Abstract][Full Text] [Related]
47. The recognition domain of the BpuJI restriction endonuclease in complex with cognate DNA at 1.3-A resolution. Sukackaite R; Grazulis S; Bochtler M; Siksnys V J Mol Biol; 2008 May; 378(5):1084-93. PubMed ID: 18433771 [TBL] [Abstract][Full Text] [Related]
48. Restriction endonucleases: one of these things is not like the others. Galburt EA; Stoddard BL Nat Struct Biol; 2000 Feb; 7(2):89-91. PubMed ID: 10655603 [TBL] [Abstract][Full Text] [Related]
49. [Type IIE and IIF restriction endonucleases interacting with two recognition sites in DNA]. Kirsanova OV; Baskunov VB; Gromova ES Mol Biol (Mosk); 2004; 38(5):886-900. PubMed ID: 15554190 [TBL] [Abstract][Full Text] [Related]
50. The structure of I-Crel, a group I intron-encoded homing endonuclease. Heath PJ; Stephens KM; Monnat RJ; Stoddard BL Nat Struct Biol; 1997 Jun; 4(6):468-76. PubMed ID: 9187655 [TBL] [Abstract][Full Text] [Related]
51. Heterogeneity in molecular recognition by restriction endonucleases: osmotic and hydrostatic pressure effects on BamHI, Pvu II, and EcoRV specificity. Robinson CR; Sligar SG Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3444-8. PubMed ID: 7724581 [TBL] [Abstract][Full Text] [Related]
52. The nicking endonuclease N.BstNBI is closely related to type IIs restriction endonucleases MlyI and PleI. Higgins LS; Besnier C; Kong H Nucleic Acids Res; 2001 Jun; 29(12):2492-501. PubMed ID: 11410656 [TBL] [Abstract][Full Text] [Related]
53. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease. Sam MD; Perona JJ Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476 [TBL] [Abstract][Full Text] [Related]
54. Role of protein-induced bending in the specificity of DNA recognition: crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT). Horton NC; Perona JJ J Mol Biol; 1998 Apr; 277(4):779-87. PubMed ID: 9545372 [TBL] [Abstract][Full Text] [Related]
55. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA. Garcia RA; Bustamante CJ; Reich NO Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7618-22. PubMed ID: 8755524 [TBL] [Abstract][Full Text] [Related]
56. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese. Vipond IB; Moon BJ; Halford SE Biochemistry; 1996 Feb; 35(6):1712-21. PubMed ID: 8639650 [TBL] [Abstract][Full Text] [Related]
57. Ca2+ binding in the active site of HincII: implications for the catalytic mechanism. Etzkorn C; Horton NC Biochemistry; 2004 Oct; 43(42):13256-70. PubMed ID: 15491133 [TBL] [Abstract][Full Text] [Related]
58. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Eisenschmidt K; Lanio T; Simoncsits A; Jeltsch A; Pingoud V; Wende W; Pingoud A Nucleic Acids Res; 2005; 33(22):7039-47. PubMed ID: 16356926 [TBL] [Abstract][Full Text] [Related]
59. Bifunctional TaqII restriction endonuclease: redefining the prototype DNA recognition site and establishing the Fidelity Index for partial cleaving. Zylicz-Stachula A; Zołnierkiewicz O; Sliwińska K; Jeżewska-Frąckowiak J; Skowron PM BMC Biochem; 2011 Dec; 12():62. PubMed ID: 22141927 [TBL] [Abstract][Full Text] [Related]
60. Identification of base-specific contacts in protein-DNA complexes by photocrosslinking and mass spectrometry: a case study using the restriction endonuclease SsoII. Pingoud V; Geyer H; Geyer R; Kubareva E; Bujnicki JM; Pingoud A Mol Biosyst; 2005 Jul; 1(2):135-41. PubMed ID: 16880975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]