BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1007 related articles for article (PubMed ID: 9210471)

  • 21. Decoupling of the bc1 complex in S. cerevisiae; point mutations affecting the cytochrome b gene bring new information about the structural aspect of the proton translocation.
    Bruel C; Manon S; Guérin M; Lemesle-Meunier D
    J Bioenerg Biomembr; 1995 Oct; 27(5):527-39. PubMed ID: 8718457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans.
    Stroh A; Anderka O; Pfeiffer K; Yagi T; Finel M; Ludwig B; Schägger H
    J Biol Chem; 2004 Feb; 279(6):5000-7. PubMed ID: 14610094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the oxidation pathways of the mitochondrial bc1 complex from beef heart. Effects of various inhibitors.
    Degli Esposti M; Tsai AL; Palmer G; Lenaz G
    Eur J Biochem; 1986 Nov; 160(3):547-55. PubMed ID: 3023079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY; Yu L; Yu CA
    J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclearly inherited diuron-resistant mutations conferring a deficiency in the NADH--or succinate--ubiquinone oxidoreductase activity in Saccharomyces cerevisiae.
    Meunier B; Colson-Corbisier AM; Lemesle-Meunier D
    Eur J Biochem; 1989 Oct; 184(3):651-6. PubMed ID: 2509199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558.
    Takamiya S; Furushima R; Oya H
    Biochim Biophys Acta; 1986 Jan; 848(1):99-107. PubMed ID: 3753651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H; Berden JA; Grivell LA; van Dam K
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase.
    Yu CA; Yu L
    Biochemistry; 1980 Jul; 19(15):3579-85. PubMed ID: 6250572
    [No Abstract]   [Full Text] [Related]  

  • 33. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration.
    Barros MH; Johnson A; Gin P; Marbois BN; Clarke CF; Tzagoloff A
    J Biol Chem; 2005 Dec; 280(52):42627-35. PubMed ID: 16230336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis.
    Menzies FM; Cookson MR; Taylor RW; Turnbull DM; Chrzanowska-Lightowlers ZM; Dong L; Figlewicz DA; Shaw PJ
    Brain; 2002 Jul; 125(Pt 7):1522-33. PubMed ID: 12077002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the structures of the quinone-binding sites in beef heart mitochondria.
    Tan AK; Ramsay RR; Singer TP; Miyoshi H
    J Biol Chem; 1993 Sep; 268(26):19328-33. PubMed ID: 8396133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function relationships of the mitochondrial bc1 complex in temperature-sensitive mutants of the cytochrome b gene, impaired in the catalytic center N.
    Brasseur G; Coppée JY; Colson AM; Brivet-Chevillotte P
    J Biol Chem; 1995 Dec; 270(49):29356-64. PubMed ID: 7493970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protonmotive Q cycle pathway of electron transfer and energy transduction in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans.
    Yang XH; Trumpower BL
    J Biol Chem; 1988 Aug; 263(24):11962-70. PubMed ID: 2841340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives.
    Yu CA; Gu LQ; Lin YZ; Yu L
    Biochemistry; 1985 Jul; 24(15):3897-902. PubMed ID: 2996584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of age and dietary antioxidants on cerebral electron transport chain activity.
    Sharman EH; Bondy SC
    Neurobiol Aging; 2001; 22(4):629-34. PubMed ID: 11445263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.