BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9210979)

  • 1. Percutaneous absorption and disposition studies of methotrexate in rabbits and rats.
    Lu G; Jun HW; Suh H
    Biopharm Drug Dispos; 1997 Jul; 18(5):409-22. PubMed ID: 9210979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetic studies of methotrexate in plasma and synovial fluid following i.v. bolus and topical routes of administration in dogs.
    Lu GW; Jun HW; Dzimianski MT; Qiu HC; McCall JW
    Pharm Res; 1995 Oct; 12(10):1474-7. PubMed ID: 8584484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a dog microdialysis model for determining synovial fluid pharmacokinetics of anti-arthritis compounds exemplified by methotrexate.
    Qian M; West W; Wu JT; Lu B; Christ DD
    Pharm Res; 2003 Apr; 20(4):605-10. PubMed ID: 12739768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetic and local tissue disposition studies of naproxen-following topical and systemic administration in dogs and rats.
    Suh H; Jun HW; Dzimianski MT; Lu GW
    Biopharm Drug Dispos; 1997 Oct; 18(7):623-33. PubMed ID: 9330782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot study of topical delivery of methotrexate by electroporation.
    Wong TW; Zhao YL; Sen A; Hui SW
    Br J Dermatol; 2005 Mar; 152(3):524-30. PubMed ID: 15787822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability.
    Al-Mahallawi AM; Fares AR; Abd-Elsalam WH
    AAPS PharmSciTech; 2019 Apr; 20(5):171. PubMed ID: 31004239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers.
    Yuan SH; Ge WH; Huo J; Wang XH
    Fundam Clin Pharmacol; 2009 Apr; 23(2):189-96. PubMed ID: 19298236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Percutaneous permeation of N,N-diethyl-m-toluamide (DEET) from commercial mosquito repellents and the effect of solvent.
    Stinecipher J; Shah J
    J Toxicol Environ Health; 1997 Oct; 52(2):119-35. PubMed ID: 9310145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse targeting of peritoneal tumors: selective alteration of the disposition of methotrexate through the use of anti-methotrexate antibodies and antibody fragments.
    Balthasar JP; Fung HL
    J Pharm Sci; 1996 Oct; 85(10):1035-43. PubMed ID: 8897267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ketoprofen and indomethacin on methotrexate pharmacokinetics in mice plasma and tumor tissues.
    Elmorsi YM; El-Haggar SM; Ibrahim OM; Mabrouk MM
    Eur J Drug Metab Pharmacokinet; 2013 Mar; 38(1):27-32. PubMed ID: 23161397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics of insect repellent N,N-diethyl-m-toluamide in beagle dogs following intravenous and topical routes of administration.
    Qiu H; Jun HW; Tao J
    J Pharm Sci; 1997 Apr; 86(4):514-6. PubMed ID: 9109058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactoferrin-conjugated dendritic nanoconstructs for lung targeting of methotrexate.
    Kurmi BD; Gajbhiye V; Kayat J; Jain NK
    J Pharm Sci; 2011 Jun; 100(6):2311-20. PubMed ID: 21491447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of malignant effusions on methotrexate disposition.
    Li J; Gwilt P
    Cancer Chemother Pharmacol; 2002 Nov; 50(5):373-82. PubMed ID: 12439595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation.
    Sadarani B; Majumdar A; Paradkar S; Mathur A; Sachdev S; Mohanty B; Chaudhari P
    Biomed Pharmacother; 2019 Jun; 114():108770. PubMed ID: 30913494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced hepatocyte uptake and liver targeting of methotrexate using galactosylated albumin as a carrier.
    Han JH; Oh YK; Kim DS; Kim CK
    Int J Pharm; 1999 Oct; 188(1):39-47. PubMed ID: 10528081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetic study of methotrexate following intra-articular injection of methotrexate loaded poly(L-lactic acid) microspheres in rabbits.
    Liang LS; Wong W; Burt HM
    J Pharm Sci; 2005 Jun; 94(6):1204-15. PubMed ID: 15858840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of free extracellular levels of methotrexate by microdialysis in muscle and solid tumor of the rabbit.
    Dukic S; Kaltenbach ML; Gourdier B; Marty H; Vistelle R
    Pharm Res; 1998 Jan; 15(1):133-8. PubMed ID: 9487560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early recognition of patients with decreased methotrexate clearance following high-dose methotrexate infusion therapy.
    Ikeda H; Kihira K; Kuwata N; Arai S; Kimura Y; Miyake K; Kitaura T; Fujimura K; Kuramoto A; Fukuchi H
    Hiroshima J Med Sci; 1996 Jun; 45(2):57-62. PubMed ID: 8810132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vehicles and penetration enhancers on the in vitro and in vivo percutaneous absorption of methotrexate and edatrexate through hairless mouse skin.
    Chatterjee DJ; Li WY; Koda RT
    Pharm Res; 1997 Aug; 14(8):1058-65. PubMed ID: 9279889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats.
    Devineni D; Klein-Szanto A; Gallo JM
    Cancer Chemother Pharmacol; 1996; 38(6):499-507. PubMed ID: 8823490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.