These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 9211349)
1. Effect of glucose on the function of the calcitriol receptor and vitamin D metabolism. Patel SR; Xu Y; Koenig RJ; Hsu CH Kidney Int; 1997 Jul; 52(1):79-86. PubMed ID: 9211349 [TBL] [Abstract][Full Text] [Related]
2. Effect of glyoxylate on the function of the calcitriol receptor and vitamin D metabolism. Patel SR; Xu Y; Koenig RJ; Hsu CH Kidney Int; 1997 Jul; 52(1):39-44. PubMed ID: 9211344 [TBL] [Abstract][Full Text] [Related]
3. Effect of Schiff base formation on the function of the calcitriol receptor. Patel SR; Koenig RJ; Hsu CH Kidney Int; 1996 Nov; 50(5):1539-45. PubMed ID: 8914020 [TBL] [Abstract][Full Text] [Related]
4. New understanding of the molecular mechanism of receptor-mediated genomic actions of the vitamin D hormone. Haussler MR; Jurutka PW; Hsieh JC; Thompson PD; Selznick SH; Haussler CA; Whitfield GK Bone; 1995 Aug; 17(2 Suppl):33S-38S. PubMed ID: 8579895 [TBL] [Abstract][Full Text] [Related]
5. Salt concentration determines 1,25-dihydroxyvitamin D3 dependency of vitamin D receptor-retinoid X receptor--vitamin D-responsive element complex formation. Kimmel-Jehan C; Jehan F; DeLuca HF Arch Biochem Biophys; 1997 May; 341(1):75-80. PubMed ID: 9143355 [TBL] [Abstract][Full Text] [Related]
6. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Staal A; van Wijnen AJ; Birkenhäger JC; Pols HA; Prahl J; DeLuca H; Gaub MP; Lian JB; Stein GS; van Leeuwen JP; Stein JL Mol Endocrinol; 1996 Nov; 10(11):1444-56. PubMed ID: 8923469 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic effects of transforming growth factor-beta on vitamin D3 enhancement of osteocalcin and osteopontin transcription: reduced interactions of vitamin D receptor/retinoid X receptor complexes with vitamin E response elements. Staal A; Van Wijnen AJ; Desai RK; Pols HA; Birkenhäger JC; Deluca HF; Denhardt DT; Stein JL; Van Leeuwen JP; Stein GS; Lian JB Endocrinology; 1996 May; 137(5):2001-11. PubMed ID: 8612541 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-alpha: structural determinants within the vitamin D response element. Kuno H; Kurian SM; Hendy GN; White J; deLuca HF; Evans CO; Nanes MS Endocrinology; 1994 Jun; 134(6):2524-31. PubMed ID: 8194478 [TBL] [Abstract][Full Text] [Related]
9. The 3-epi- and 24-oxo-derivatives of 1alpha,25 dihydroxyvitamin D(3) stimulate transcription through the vitamin D receptor. Messerlian S; Gao X; St-Arnaud R J Steroid Biochem Mol Biol; 2000; 72(1-2):29-34. PubMed ID: 10731635 [TBL] [Abstract][Full Text] [Related]
10. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation. Raval-Pandya M; Freedman LP; Li H; Christakos S Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705 [TBL] [Abstract][Full Text] [Related]
11. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. Kim S; Shevde NK; Pike JW J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of vitamin D3 receptor (VDR) binding to the vitamin D response element (VDRE) in rat bone sialoprotein gene promoter. Li JJ; Kim RH; Zhang Q; Ogata Y; Sodek J Eur J Oral Sci; 1998 Jan; 106 Suppl 1():408-17. PubMed ID: 9541257 [TBL] [Abstract][Full Text] [Related]
13. Retinoid X receptor isotype identity directs human vitamin D receptor heterodimer transactivation from the 24-hydroxylase vitamin D response elements in yeast. Kephart DD; Walfish PG; DeLuca H; Butt TR Mol Endocrinol; 1996 Apr; 10(4):408-19. PubMed ID: 8721985 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of VDR-mediated transcription by phosphorylation: correlation with increased interaction between the VDR and DRIP205, a subunit of the VDR-interacting protein coactivator complex. Barletta F; Freedman LP; Christakos S Mol Endocrinol; 2002 Feb; 16(2):301-14. PubMed ID: 11818502 [TBL] [Abstract][Full Text] [Related]
15. Regulation of intestinal vitamin D receptor expression in experimental uraemia: effects of parathyroidectomy and administration of PTH. Szabó A; Schmutz A; Pesian S; Schmidt-Gayk H; Ritz E; Reichel H Nephrol Dial Transplant; 1998 Feb; 13(2):340-9. PubMed ID: 9509444 [TBL] [Abstract][Full Text] [Related]
16. Altered vitamin D metabolism and receptor interaction with the target genes in renal failure: calcitriol receptor interaction with its target gene in renal failure. Hsu CH; Patel SR Curr Opin Nephrol Hypertens; 1995 Jul; 4(4):302-6. PubMed ID: 7552094 [TBL] [Abstract][Full Text] [Related]
17. New insights into the mechanisms of vitamin D action. Christakos S; Dhawan P; Liu Y; Peng X; Porta A J Cell Biochem; 2003 Mar; 88(4):695-705. PubMed ID: 12577303 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional synergism between the vitamin D3 receptor and other nonreceptor transcription factors. Liu M; Freedman LP Mol Endocrinol; 1994 Dec; 8(12):1593-604. PubMed ID: 7708050 [TBL] [Abstract][Full Text] [Related]
19. Distinct conformational changes induced by 20-epi analogues of 1 alpha,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. Peleg S; Sastry M; Collins ED; Bishop JE; Norman AW J Biol Chem; 1995 May; 270(18):10551-8. PubMed ID: 7737990 [TBL] [Abstract][Full Text] [Related]
20. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]