BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9211399)

  • 1. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures.
    Morgan WH; Yu DY; Cooper RL; Alder VA; Cringle SJ; Constable IJ
    Microvasc Res; 1997 May; 53(3):211-21. PubMed ID: 9211399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure.
    Morgan WH; Yu DY; Alder VA; Cringle SJ; Cooper RL; House PH; Constable IJ
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1419-28. PubMed ID: 9660490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of elevated intraocular pressure on vascular pressures in the cat retina.
    Attariwala R; Giebs CP; Glucksberg MR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):1019-25. PubMed ID: 8125712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure.
    Morgan WH; Chauhan BC; Yu DY; Cringle SJ; Alder VA; House PH
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3236-42. PubMed ID: 12356830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive estimation of cerebrospinal fluid pressure waveforms by means of retinal venous pulsatility and central aortic blood pressure.
    Golzan SM; Kim MO; Seddighi AS; Avolio A; Graham SL
    Ann Biomed Eng; 2012 Sep; 40(9):1940-8. PubMed ID: 22527007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye.
    Jonas JB; Wang N; Yang D; Ritch R; Panda-Jonas S
    Prog Retin Eye Res; 2015 May; 46():67-83. PubMed ID: 25619727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient.
    Morgan WH; Yu DY; Cooper RL; Alder VA; Cringle SJ; Constable IJ
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):1163-72. PubMed ID: 7730025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of retinal microvascular pressures in the live, anesthetized cat.
    Glucksberg MR; Dunn R
    Microvasc Res; 1993 Mar; 45(2):158-65. PubMed ID: 8361399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.
    Jonas JB; Wang N; Wang S; Wang YX; You QS; Yang D; Wei WB; Xu L
    Am J Hypertens; 2014 Sep; 27(9):1170-8. PubMed ID: 24632393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrospinal fluid pressure in the pathogenesis of glaucoma.
    Jonas JB; Ritch R; Panda-Jonas S
    Prog Brain Res; 2015; 221():33-47. PubMed ID: 26518071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase and amplitude of spontaneous retinal vein pulsations: An extended constant inflow and variable outflow model.
    Levine DN; Bebie H
    Microvasc Res; 2016 Jul; 106():67-79. PubMed ID: 26997658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central venous pulsations: new findings, clinical importance and relation to cerebrospinal fluid pressure.
    Morgan WH
    J Glaucoma; 2013; 22 Suppl 5():S15-6. PubMed ID: 23733116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc.
    Morgan WH; Yu DY; Balaratnasingam C
    J Glaucoma; 2008 Aug; 17(5):408-13. PubMed ID: 18703953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high PaCO2 and time on cerebrospinal fluid and intraocular pressure in halothane-anesthetized horses.
    Cullen LK; Steffey EP; Bailey CS; Kortz G; da Silva Curiel J; Bellhorn RW; Woliner MJ; Elliott AR; Jarvis KA
    Am J Vet Res; 1990 Feb; 51(2):300-4. PubMed ID: 2301844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human.
    Balaratnasingam C; Morgan WH; Johnstone V; Pandav SS; Cringle SJ; Yu DY
    Exp Eye Res; 2009 Nov; 89(5):618-28. PubMed ID: 19523943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoregulation of choroidal blood flow in the rabbit.
    Kiel JW; Shepherd AP
    Invest Ophthalmol Vis Sci; 1992 Jul; 33(8):2399-410. PubMed ID: 1634337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen saturation in optic nerve head structures by hyperspectral image analysis.
    Beach J; Ning J; Khoobehi B
    Curr Eye Res; 2007 Feb; 32(2):161-70. PubMed ID: 17364749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfusion of the juxtapapillary retina and optic nerve head in acute ocular hypertension.
    Michelson G; Groh MJ; Langhans M
    Ger J Ophthalmol; 1996 Nov; 5(6):315-21. PubMed ID: 9479511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of acute experimental retinal vein occlusion on cat retinal vein pressures.
    Attariwala R; Jensen PS; Glucksberg MR
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2742-9. PubMed ID: 9418726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the calibration and interpretation of dynamic ocular force measurements.
    Morgan WH; Cringle SJ; Kang MH; Pandav S; Balaratnasingam C; Ezekial D; Yu DY
    Graefes Arch Clin Exp Ophthalmol; 2010 Mar; 248(3):401-7. PubMed ID: 20107829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.