These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9211643)

  • 1. Recent structural solutions for antibody neutralization of viruses.
    Stewart PL; Nemerow GR
    Trends Microbiol; 1997 Jun; 5(6):229-33. PubMed ID: 9211643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody interactions with rhinovirus: lessons for mechanisms of neutralization and the role of immunity in viral evolution.
    Smith TJ
    Curr Top Microbiol Immunol; 2001; 260():1-28. PubMed ID: 11443870
    [No Abstract]   [Full Text] [Related]  

  • 3. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase.
    Colman PM; Laver WG; Varghese JN; Baker AT; Tulloch PA; Air GM; Webster RG
    Nature; 1987 Mar 26-Apr 1; 326(6111):358-63. PubMed ID: 2436051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site.
    Fleury D; Barrère B; Bizebard T; Daniels RS; Skehel JJ; Knossow M
    Nat Struct Biol; 1999 Jun; 6(6):530-4. PubMed ID: 10360354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of a neutralising antibody: structure and neutralisation.
    Verdaguer N; Schoehn G; Ochoa WF; Fita I; Brookes S; King A; Domingo E; Mateu MG; Stuart D; Hewat EA
    Virology; 1999 Mar; 255(2):260-8. PubMed ID: 10069951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon.
    Smith TJ; Chase ES; Schmidt TJ; Olson NH; Baker TS
    Nature; 1996 Sep; 383(6598):350-4. PubMed ID: 8848050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2.
    Hewat EA; Blaas D
    EMBO J; 1996 Apr; 15(7):1515-23. PubMed ID: 8612574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid-body docking with mutant constraints of influenza hemagglutinin with antibody HC19.
    Cherfils J; Bizebard T; Knossow M; Janin J
    Proteins; 1994 Jan; 18(1):8-18. PubMed ID: 7511810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes.
    Che Z; Olson NH; Leippe D; Lee WM; Mosser AG; Rueckert RR; Baker TS; Smith TJ
    J Virol; 1998 Jun; 72(6):4610-22. PubMed ID: 9573224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility.
    Smith TJ; Olson NH; Cheng RH; Chase ES; Baker TS
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7015-8. PubMed ID: 8394005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonneutralizing human rhinovirus serotype 2-specific monoclonal antibody 2G2 attaches to the region that undergoes the most dramatic changes upon release of the viral RNA.
    Hewat EA; Blaas D
    J Virol; 2006 Dec; 80(24):12398-401. PubMed ID: 17005641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on antibody interacting with viruses.
    Hewat E; Blaas D
    Curr Top Microbiol Immunol; 2001; 260():29-44. PubMed ID: 11443879
    [No Abstract]   [Full Text] [Related]  

  • 13. Nonneutralizing human antibody fragments against hepatitis C virus E2 glycoprotein modulate neutralization of binding activity of human recombinant Fabs.
    Burioni R; Bugli F; Mancini N; Rosa D; Di Campli C; Moroncini G; Manzin A; Abrignani S; Varaldo PE; Clementi M; Fadda G
    Virology; 2001 Sep; 288(1):29-35. PubMed ID: 11543655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of antibodies to isolated haemagglutinin and neuraminidase molecules of influenza virus observed in the electron microscope.
    Wrigley NG; Laver WG; Downie JC
    J Mol Biol; 1977 Jan; 109(3):405-21. PubMed ID: 64612
    [No Abstract]   [Full Text] [Related]  

  • 15. Influenza PR8 HA-specific Fab fragments produced by phage display methods.
    Asanuma H; Matsumoto-Takasaki A; Suzuki Y; Tamura S; Sata T; Kusada Y; Matsushita M; Fujita-Yamaguchi Y
    Biochem Biophys Res Commun; 2008 Feb; 366(2):445-9. PubMed ID: 18067856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutralization of animal virus infectivity by antibody.
    Reading SA; Dimmock NJ
    Arch Virol; 2007; 152(6):1047-59. PubMed ID: 17516034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting with scFv: immune modulation by complement receptor specific constructs.
    Molnár E; Prechl J; Isaák A; Erdei A
    J Mol Recognit; 2003; 16(5):318-23. PubMed ID: 14523944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between virion-bound host intercellular adhesion molecule-1 and the high-affinity state of lymphocyte function-associated antigen-1 on target cells renders R5 and X4 isolates of human immunodeficiency virus type 1 more refractory to neutralization.
    Fortin JF; Cantin R; Bergeron MG; Tremblay MJ
    Virology; 2000 Mar; 268(2):493-503. PubMed ID: 10704357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryo-EM Studies of Virus-Antibody Immune Complexes.
    Li N; Li Z; Fu Y; Cao S
    Virol Sin; 2020 Feb; 35(1):1-13. PubMed ID: 31916022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry.
    Tihova M; Dryden KA; Bellamy AR; Greenberg HB; Yeager M
    J Mol Biol; 2001 Dec; 314(5):985-92. PubMed ID: 11743716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.