These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 9211910)

  • 41. ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking.
    Hunke S; Mourez M; Jehanno M; Dassa E; Schneider E
    J Biol Chem; 2000 May; 275(20):15526-34. PubMed ID: 10809785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncoupling substrate transport from ATP hydrolysis in the Escherichia coli maltose transporter.
    Cui J; Qasim S; Davidson AL
    J Biol Chem; 2010 Dec; 285(51):39986-93. PubMed ID: 20959448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH.
    Hülsmann A; Lurz R; Scheffel F; Schneider E
    J Bacteriol; 2000 Nov; 182(22):6292-301. PubMed ID: 11053372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli.
    Davidson AL; Nikaido H
    J Biol Chem; 1990 Mar; 265(8):4254-60. PubMed ID: 2155217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport.
    Chen J; Sharma S; Quiocho FA; Davidson AL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1525-30. PubMed ID: 11171984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex.
    Szmelcman S; Sassoon N; Hofnung M
    Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Demonstration of conformational changes associated with activation of the maltose transport complex.
    Mannering DE; Sharma S; Davidson AL
    J Biol Chem; 2001 Apr; 276(15):12362-8. PubMed ID: 11150310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Maltoporins and maltose-binding proteins of Yersinia enterocolitica.
    Brzostek K; Heleszko H; Hrebenda J
    J Gen Microbiol; 1993 Feb; 139(2):195-201. PubMed ID: 8436943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maltose transport in Aeromonas hydrophila: purification, biochemical characterization and partial protein sequence analysis of a periplasmic maltose-binding protein.
    Höner zu Bentrup K; Schmid R; Schneider E
    Microbiology (Reading); 1994 Apr; 140 ( Pt 4)():945-51. PubMed ID: 8012611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins.
    Ferenci T; Muir M; Lee KS; Maris D
    Biochim Biophys Acta; 1986 Aug; 860(1):44-50. PubMed ID: 3524683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regions of maltose-binding protein that influence SecB-dependent and SecA-dependent export in Escherichia coli.
    Strobel SM; Cannon JG; Bassford PJ
    J Bacteriol; 1993 Nov; 175(21):6988-95. PubMed ID: 8226642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli.
    Merino G; Shuman HA
    J Biol Chem; 1998 Jan; 273(4):2435-44. PubMed ID: 9442094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the periplasmic maltose-binding protein and the outer-membrane phage lambda receptor in maltodextrin transport of Escherichia coli.
    Ferenci T; Brass J; Boos W
    Biochem Soc Trans; 1980 Dec; 8(6):680-1. PubMed ID: 6450701
    [No Abstract]   [Full Text] [Related]  

  • 54. Identification of the malK gene product. A peripheral membrane component of the Escherichia coli maltose transport system.
    Shuman HA; Silhavy TJ
    J Biol Chem; 1981 Jan; 256(2):560-2. PubMed ID: 6778869
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis.
    Spurlino JC; Lu GY; Quiocho FA
    J Biol Chem; 1991 Mar; 266(8):5202-19. PubMed ID: 2002054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. I. Transport of maltose.
    Duplay P; Szmelcman S; Bedouelle H; Hofnung M
    J Mol Biol; 1987 Apr; 194(4):663-73. PubMed ID: 2821264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits.
    Mourez M; Hofnung M; Dassa E
    EMBO J; 1997 Jun; 16(11):3066-77. PubMed ID: 9214624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activity of protein MalE (maltose-binding protein) fused to cytoplasmic and periplasmic regions of an Escherichia coli inner membrane protein.
    Dassa E; Lambert P
    Res Microbiol; 1997 Jun; 148(5):389-95. PubMed ID: 9765817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dynamics of the MBP-MalFGK(2) interaction: a prototype for binding protein dependent ABC-transporter systems.
    Shilton BH
    Biochim Biophys Acta; 2008 Sep; 1778(9):1772-80. PubMed ID: 17950243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli.
    Shuman HA; Panagiotidis CH
    J Bioenerg Biomembr; 1993 Dec; 25(6):613-20. PubMed ID: 7511584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.