These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Segmental diversification of an identified leech neuron correlates with the segmental domain in which it expresses Lox2, a member of the Hox gene family. Berezovskii VK; Shankland M J Neurobiol; 1996 Mar; 29(3):319-29. PubMed ID: 8907161 [TBL] [Abstract][Full Text] [Related]
6. Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment-specific motor neuron. Gharbaran R; Aisemberg GO Int J Dev Neurosci; 2013 Apr; 31(2):105-15. PubMed ID: 23220224 [TBL] [Abstract][Full Text] [Related]
7. The leech homeobox gene Lox4 may determine segmental differentiation of identified neurons. Wong VY; Aisemberg GO; Gan WB; Macagno ER J Neurosci; 1995 Aug; 15(8):5551-9. PubMed ID: 7643200 [TBL] [Abstract][Full Text] [Related]
8. Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Baccus SA Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8345-50. PubMed ID: 9653189 [TBL] [Abstract][Full Text] [Related]
9. Calcium dynamics and compartmentalization in leech neurons. Andjelic S; Torre V J Neurophysiol; 2005 Dec; 94(6):4430-40. PubMed ID: 16135547 [TBL] [Abstract][Full Text] [Related]
10. Membrane properties of microglial cells isolated from the leech central nervous system. Stewart RR Proc Biol Sci; 1994 Mar; 255(1344):201-8. PubMed ID: 7517563 [TBL] [Abstract][Full Text] [Related]
11. Simulator for neural networks and action potentials: description and application. Ziv I; Baxter DA; Byrne JH J Neurophysiol; 1994 Jan; 71(1):294-308. PubMed ID: 7512628 [TBL] [Abstract][Full Text] [Related]
12. Dendritic Ca(2+)-activated K(+) conductances regulate electrical signal propagation in an invertebrate neuron. Wessel R; Kristan WB; Kleinfeld D J Neurosci; 1999 Oct; 19(19):8319-26. PubMed ID: 10493733 [TBL] [Abstract][Full Text] [Related]
13. [The effects of axotomy on the nociceptive neurons of the leech]. Pastor-Gómez J; López de Armentia M; Mendioroz M Rev Neurol; 2002 Dec 1-15; 35(11):1001-9. PubMed ID: 12497303 [TBL] [Abstract][Full Text] [Related]
14. Lox1, an Antennapedia-class homeobox gene, is expressed during leech gangliogenesis in both transient and stable central neurons. Aisemberg GO; Macagno ER Dev Biol; 1994 Feb; 161(2):455-65. PubMed ID: 7906233 [TBL] [Abstract][Full Text] [Related]
15. Statistical independence and neural computation in the leech ganglion. Pinato G; Battiston S; Torre V Biol Cybern; 2000 Aug; 83(2):119-30. PubMed ID: 10966051 [TBL] [Abstract][Full Text] [Related]
16. Activity-dependent accumulation of Ca2+ in axon and dendrites of the leech Leydig neuron. Lohr C; Beck A; Deitmer JW Neuroreport; 2001 Dec; 12(17):3649-53. PubMed ID: 11726767 [TBL] [Abstract][Full Text] [Related]
17. Temporal correlation between neuronal tail ganglion activity and locomotion in the leech, Hirudo medicinalis. Baader AP; Bächtold D Invert Neurosci; 1997 Mar; 2(4):245-51. PubMed ID: 9460234 [TBL] [Abstract][Full Text] [Related]
18. The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron. Städele C; Stein W J Neurosci; 2016 Jun; 36(25):6718-31. PubMed ID: 27335403 [TBL] [Abstract][Full Text] [Related]
19. Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech. Angstadt JD; Choo JJ J Neurophysiol; 1996 Sep; 76(3):1491-502. PubMed ID: 8890269 [TBL] [Abstract][Full Text] [Related]
20. Optical recording of calcium and voltage transients following impulses in cell bodies and processes of identified leech neurons in culture. Ross WN; Arechiga H; Nicholls JG J Neurosci; 1987 Dec; 7(12):3877-87. PubMed ID: 2447247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]