These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9212080)

  • 1. Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ.
    Kirischuk S; Kettenmann H; Verkhratsky A
    FASEB J; 1997 Jun; 11(7):566-72. PubMed ID: 9212080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells.
    Kirischuk S; Kettenmann H; Verkhratsky A
    Pflugers Arch; 2007 May; 454(2):245-52. PubMed ID: 17273865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ.
    Munsch T; Deitmer JW
    Neurosci Res; 1997 Jan; 27(1):45-56. PubMed ID: 9089698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium response to the excitotoxin kainate is amplified by subsequent reduction of extracellular sodium.
    Courtney MJ; Enkvist MO; Akerman KE
    Neuroscience; 1995 Oct; 68(4):1051-7. PubMed ID: 8544981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate.
    Deitmer JW; Schneider HP
    Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intracellular Na+ and mitochondria in buffering of kainate-induced intracellular free Ca2+ changes in rat forebrain neurones.
    Hoyt KR; Stout AK; Cardman JM; Reynolds IJ
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):103-16. PubMed ID: 9547385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kainate responses of leech Retzius neurons in situ and in vitro.
    Löhrke S; Deitmer JW
    J Neurobiol; 1996 Nov; 31(3):345-58. PubMed ID: 8910792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and functional properties of glutamate receptors in the leech central nervous system.
    Dierkes PW; Hochstrate P; Schlue WR
    J Neurophysiol; 1996 Jun; 75(6):2312-21. PubMed ID: 8793744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Ca2+ regulation by the leech giant glial cell.
    Nett W; Deitmer JW
    J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):147-62. PubMed ID: 9490831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+)-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate.
    Yu SP; Choi DW
    Eur J Neurosci; 1997 Jun; 9(6):1273-81. PubMed ID: 9215711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of kainate receptor/channels on cultured Bergmann glia.
    Ortega A; Eshhar N; Teichberg VI
    Neuroscience; 1991; 41(2-3):335-49. PubMed ID: 1714547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress.
    Sibarov DA; Bolshakov AE; Abushik PA; Krivoi II; Antonov SM
    J Pharmacol Exp Ther; 2012 Dec; 343(3):596-607. PubMed ID: 22927545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kainate activates Ca(2+)-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices.
    Jabs R; Kirchhoff F; Kettenmann H; Steinhäuser C
    Pflugers Arch; 1994 Feb; 426(3-4):310-9. PubMed ID: 8183642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors.
    Simpson PB; Russell JT
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):413-26. PubMed ID: 9508806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate/glutamate-induced changes in intracellular calcium and pH in leech glial cells.
    Deitmer JW; Munsch T
    Neuroreport; 1992 Aug; 3(8):693-6. PubMed ID: 1355671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium homeostasis in guinea pig type-I vestibular hair cell: possible involvement of an Na(+)-Ca2+ exchanger.
    Chabbert C; Canitrot Y; Sans A; Lehouelleur J
    Hear Res; 1995 Sep; 89(1-2):101-8. PubMed ID: 8600114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium/calcium exchange regulates cytoplasmic calcium in smooth muscle.
    McCarron JG; Walsh JV; Fay FS
    Pflugers Arch; 1994 Feb; 426(3-4):199-205. PubMed ID: 8183630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fura-2 signals evoked by kainate in leech glial cells in the presence of different divalent cations.
    Munsch T; Nett W; Deitmer JW
    Glia; 1994 Aug; 11(4):345-53. PubMed ID: 7960037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate release evoked by glutamate receptor agonists in cultured chick retina cells: modulation by arachidonic acid.
    Duarte CB; Santos PF; Sánchez-Prieto J; Carvalho AP
    J Neurosci Res; 1996 May; 44(4):363-73. PubMed ID: 8739156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger.
    Golovina VA; Bambrick LL; Yarowsky PJ; Krueger BK; Blaustein MP
    Glia; 1996 Apr; 16(4):296-305. PubMed ID: 8721670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.