These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9212080)

  • 21. Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
    Reichling DB; MacDermott AB
    J Physiol; 1993 Sep; 469():67-88. PubMed ID: 7505825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abnormal myocyte Ca2+ homeostasis in rabbits with pacing-induced heart failure.
    Yao A; Su Z; Nonaka A; Zubair I; Spitzer KW; Bridge JH; Muelheims G; Ross J; Barry WH
    Am J Physiol; 1998 Oct; 275(4):H1441-8. PubMed ID: 9746495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Na(+)-Ca2+ exchanger in agonist-induced Ca2+ signaling in cultured rat astrocytes.
    Takuma K; Matsuda T; Hashimoto H; Kitanaka J; Asano S; Kishida Y; Baba A
    J Neurochem; 1996 Nov; 67(5):1840-5. PubMed ID: 8863488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular acidification and Ca2+ transients in cultured rat cerebellar astrocytes evoked by glutamate agonists and noradrenaline.
    Brune T; Deitmer JW
    Glia; 1995 Jun; 14(2):153-61. PubMed ID: 7558242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characteristics of non-NMDA-type ionotropic glutamate receptor channels in AII amacrine cells in rat retina.
    Mørkve SH; Veruki ML; Hartveit E
    J Physiol; 2002 Jul; 542(Pt 1):147-65. PubMed ID: 12096058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine-induced Ca2+ release activates Ca2+ extrusion via Na+-Ca2+ exchanger in cardiac myocytes.
    Callewaert G; Cleemann L; Morad M
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C147-52. PubMed ID: 2750887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release.
    Kirischuk S; Kirchhoff F; Matyash V; Kettenmann H; Verkhratsky A
    Neuroscience; 1999; 92(3):1051-9. PubMed ID: 10426545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells.
    Doering AE; Lederer WJ
    J Physiol; 1993 Jul; 466():481-99. PubMed ID: 8410703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium signaling of glial cells along mammalian axons.
    Kriegler S; Chiu SY
    J Neurosci; 1993 Oct; 13(10):4229-45. PubMed ID: 7692011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of Na+/Ca2+ exchanger in maintaining [Ca2+]c at a stable state in rat pancreatic islets.
    Yoshihashi K; Shibuya I; Kanno T
    Jpn J Physiol; 1996 Dec; 46(6):473-80. PubMed ID: 9087857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium-calcium exchanger in cultured human retinal pigment epithelium.
    Mangini NJ; Haugh-Scheidt L; Valle JE; Cragoe EJ; Ripps H; Kennedy BG
    Exp Eye Res; 1997 Dec; 65(6):821-34. PubMed ID: 9441706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dendritic calcium transients in the leech giant glial cell in situ.
    Lohr C; Deitmer JW
    Glia; 1999 Apr; 26(2):109-18. PubMed ID: 10384876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals.
    Tuschick S; Kirischuk S; Kirchhoff F; Liefeldt L; Paul M; Verkhratsky A; Kettenmann H
    Cell Calcium; 1997 Jun; 21(6):409-19. PubMed ID: 9223677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Na+-Ca2+ exchanger activity on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-induced Ca2+ influx in cerebellar Purkinje neurons.
    Kim YT; Park YJ; Jung SY; Seo WS; Suh CK
    Neuroscience; 2005; 131(3):589-99. PubMed ID: 15730865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sodium pump modulates the influence of I(Na) on [Ca2+]i transients in mouse ventricular myocytes.
    Su Z; Sugishita K; Ritter M; Li F; Spitzer KW; Barry WH
    Biophys J; 2001 Mar; 80(3):1230-7. PubMed ID: 11222287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells.
    Müller T; Möller T; Berger T; Schnitzer J; Kettenmann H
    Science; 1992 Jun; 256(5063):1563-6. PubMed ID: 1317969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytoplasmic sodium, calcium and free energy change of the Na+/Ca2+-exchanger in rat ventricular myocytes.
    Baartscheer A; Schumacher CA; Fiolet JW
    J Mol Cell Cardiol; 1998 Nov; 30(11):2437-47. PubMed ID: 9925378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+ influx into leech glial cells and neurones caused by pharmacologically distinct glutamate receptors.
    Hochstrate P; Schlue WR
    Glia; 1994 Dec; 12(4):268-80. PubMed ID: 7890331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reverse Na+/Ca2+ exchange contributes to glutamate-induced intracellular Ca2+ concentration increases in cultured rat forebrain neurons.
    Hoyt KR; Arden SR; Aizenman E; Reynolds IJ
    Mol Pharmacol; 1998 Apr; 53(4):742-9. PubMed ID: 9547366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.