These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9212271)

  • 1. Implications of positive feedback in the control of movement.
    Prochazka A; Gillard D; Bennett DJ
    J Neurophysiol; 1997 Jun; 77(6):3237-51. PubMed ID: 9212271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive force feedback control of muscles.
    Prochazka A; Gillard D; Bennett DJ
    J Neurophysiol; 1997 Jun; 77(6):3226-36. PubMed ID: 9212270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury.
    Schmit BD; Benz EN; Rymer WZ
    Exp Brain Res; 2002 Jul; 145(1):40-9. PubMed ID: 12070743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics.
    Schouten AC; Mugge W; van der Helm FC
    J Biomech; 2008; 41(8):1659-67. PubMed ID: 18457842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflex gain of muscle spindle pathways during fatigue.
    Biro A; Griffin L; Cafarelli E
    Exp Brain Res; 2007 Feb; 177(2):157-66. PubMed ID: 16924484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of stretch reflexes to locomotor control: a modeling study.
    Yakovenko S; Gritsenko V; Prochazka A
    Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical action of proprioceptive length feedback in a model of cat hindlimb.
    Burkholder TJ; Nicols TR
    Motor Control; 2000 Apr; 4(2):201-20. PubMed ID: 11508248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
    Kistemaker DA; Van Soest AJ; Wong JD; Kurtzer I; Gribble PL
    J Neurophysiol; 2013 Feb; 109(4):1126-39. PubMed ID: 23100138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of bipedal stance: the contribution of cocontraction and spindle feedback.
    van Soest AJ; Haenen WP; Rozendaal LA
    Biol Cybern; 2003 Apr; 88(4):293-301. PubMed ID: 12690488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid spinal mechanisms of motor coordination.
    Nichols TR; Cope TC; Abelew TA
    Exerc Sport Sci Rev; 1999; 27():255-84. PubMed ID: 10791019
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinesthesia: the role of muscle receptors.
    Proske U
    Muscle Nerve; 2006 Nov; 34(5):545-58. PubMed ID: 16897766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusimotor control of proprioceptive feedback during locomotion and balancing: can simple lessons be learned for artificial control of gait?
    Hulliger M
    Prog Brain Res; 1993; 97():173-80. PubMed ID: 8234743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle spindles and the regulation of movement.
    Scholz JP; Campbell SK
    Phys Ther; 1980 Nov; 60(11):1416-24. PubMed ID: 6449017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneurography and applications to issues of motor control: Fifth Annual Stuart Reiner Memorial Lecture.
    Hagbarth KE
    Muscle Nerve; 1993 Jul; 16(7):693-705. PubMed ID: 8389417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explanation of physiological muscle tremor.
    Eke-Okoro ST
    Electromyogr Clin Neurophysiol; 1994 Sep; 34(6):341-3. PubMed ID: 8001474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The implications of force feedback for the lambda model.
    Nichols R; Ross KT
    Adv Exp Med Biol; 2009; 629():663-79. PubMed ID: 19227527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle spindle function during normal movement.
    Prochazka A
    Int Rev Physiol; 1981; 25():47-90. PubMed ID: 6451597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic meets neuromechanics, part I: the methodology and implementation.
    Niu CM; Jalaleddini K; Sohn WJ; Rocamora J; Sanger TD; Valero-Cuevas FJ
    J Neural Eng; 2017 Apr; 14(2):025001. PubMed ID: 28084217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex.
    Sreenivasa M; Ayusawa K; Nakamura Y
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):591-602. PubMed ID: 26394432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory systems in the control of movement.
    Prochazka A; Ellaway P
    Compr Physiol; 2012 Oct; 2(4):2615-27. PubMed ID: 23720260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.