BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9212283)

  • 1. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional anatomy of pursuit eye movements in humans as revealed by fMRI.
    Petit L; Haxby JV
    J Neurophysiol; 1999 Jul; 82(1):463-71. PubMed ID: 10400972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation.
    Rosano C; Krisky CM; Welling JS; Eddy WF; Luna B; Thulborn KR; Sweeney JA
    Cereb Cortex; 2002 Feb; 12(2):107-15. PubMed ID: 11739259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field.
    Gottlieb JP; MacAvoy MG; Bruce CJ
    J Neurophysiol; 1994 Oct; 72(4):1634-53. PubMed ID: 7823092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study.
    Nagel M; Sprenger A; Zapf S; Erdmann C; Kömpf D; Heide W; Binkofski F; Lencer R
    Neuroimage; 2006 Feb; 29(4):1319-25. PubMed ID: 16216531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging.
    Darby DG; Nobre AC; Thangaraj V; Edelman R; Mesulam MM; Warach S
    Neuroimage; 1996 Feb; 3(1):53-62. PubMed ID: 9345475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus.
    Schmitt O; Modersitzki J; Heldmann S; Wirtz S; Hömke L; Heide W; Kömpf D; Wree A
    Anat Embryol (Berl); 2005 Dec; 210(5-6):387-400. PubMed ID: 16177908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2754-71. PubMed ID: 8899643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccade and smooth-pursuit impairment after cerebral hemispheric lesions.
    Pierrot-Deseilligny C
    Eur Neurol; 1994; 34(3):121-34. PubMed ID: 8033937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Detection of cortical activities on eye movement using functional magnetic resonance imaging].
    Yoshida M; Kawai K; Kitahara K; Soulié D; Cordoliani YS; Iba-Zizen MT; Cabanis EA
    Nippon Ganka Gakkai Zasshi; 1997 Nov; 101(11):879-84. PubMed ID: 9396235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional asymmetries revealed in visually guided saccades: an FMRI study.
    Petit L; Zago L; Vigneau M; Andersson F; Crivello F; Mazoyer B; Mellet E; Tzourio-Mazoyer N
    J Neurophysiol; 2009 Nov; 102(5):2994-3003. PubMed ID: 19710382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2740-53. PubMed ID: 8899642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of smooth pursuit eye movements induced by electrical stimulation of the monkey frontal eye field.
    Izawa Y; Suzuki H; Shinoda Y
    J Neurophysiol; 2011 Nov; 106(5):2675-87. PubMed ID: 21849604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression.
    Milea D; Lobel E; Lehéricy S; Duffau H; Rivaud-Péchoux S; Berthoz A; Pierrot-Deseilligny C
    Neuroreport; 2002 Jul; 13(10):1359-64. PubMed ID: 12151803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in cerebral activation during smooth pursuit and saccadic eye movements using positron-emission tomography.
    O'Driscoll GA; Strakowski SM; Alpert NM; Matthysse SW; Rauch SL; Levy DL; Holzman PS
    Biol Psychiatry; 1998 Oct; 44(8):685-9. PubMed ID: 9798071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical afferents to the smooth-pursuit region of the macaque monkey's frontal eye field.
    Stanton GB; Friedman HR; Dias EC; Bruce CJ
    Exp Brain Res; 2005 Aug; 165(2):179-92. PubMed ID: 15940495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of fixation neurons in the monkey frontal eye field during smooth pursuit eye movements.
    Izawa Y; Suzuki H
    J Neurophysiol; 2014 Jul; 112(2):249-62. PubMed ID: 24760785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human precentral cortical activation patterns during saccade tasks: an fMRI comparison with activation during intentional eyeblink tasks.
    Kato M; Miyauchi S
    Neuroimage; 2003 Aug; 19(4):1260-72. PubMed ID: 12948687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.