BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9212283)

  • 21. Eye fields in the frontal lobes of primates.
    Tehovnik EJ; Sommer MA; Chou IH; Slocum WM; Schiller PH
    Brain Res Brain Res Rev; 2000 Apr; 32(2-3):413-48. PubMed ID: 10760550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey.
    Scalaidhe SP; Rodman HR; Albright TD; Gross CG
    Behav Brain Res; 1997 Mar; 84(1-2):31-46. PubMed ID: 9079770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions.
    Baumann O; Ziemus B; Luerding R; Schuierer G; Bogdahn U; Greenlee MW
    Exp Brain Res; 2007 Aug; 181(2):237-47. PubMed ID: 17372726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study.
    Berman RA; Colby CL; Genovese CR; Voyvodic JT; Luna B; Thulborn KR; Sweeney JA
    Hum Brain Mapp; 1999; 8(4):209-25. PubMed ID: 10619415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements.
    Srihasam K; Bullock D; Grossberg S
    J Cogn Neurosci; 2009 Aug; 21(8):1611-27. PubMed ID: 18823247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction.
    Derrfuss J; Vogt VL; Fiebach CJ; von Cramon DY; Tittgemeyer M
    Neuroimage; 2012 Feb; 59(4):3829-37. PubMed ID: 22155041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smooth-pursuit eye movement representation in the primate frontal eye field.
    MacAvoy MG; Gottlieb JP; Bruce CJ
    Cereb Cortex; 1991; 1(1):95-102. PubMed ID: 1822728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccades induced by stimulation of the frontal eye fields: interaction with voluntary and reflexive eye movements.
    Marrocco RT
    Brain Res; 1978 May; 146(1):23-34. PubMed ID: 417755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcranial magnetic stimulation of frontal oculomotor regions during smooth pursuit.
    Gagnon D; Paus T; Grosbras MH; Pike GB; O'Driscoll GA
    J Neurosci; 2006 Jan; 26(2):458-66. PubMed ID: 16407543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields.
    Russo GS; Bruce CJ
    J Neurophysiol; 1993 Mar; 69(3):800-18. PubMed ID: 8385196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lesions of the frontal eye field impair pursuit eye movements, but preserve the predictions driving them.
    Keating EG
    Behav Brain Res; 1993 Feb; 53(1-2):91-104. PubMed ID: 8466669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated?
    Basu D; Murthy A
    J Neurophysiol; 2020 Jan; 123(1):107-119. PubMed ID: 31721632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study.
    Heide W; Binkofski F; Seitz RJ; Posse S; Nitschke MF; Freund HJ; Kömpf D
    Eur J Neurosci; 2001 Mar; 13(6):1177-89. PubMed ID: 11285015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields.
    Dash S; Peel TR; Lomber SG; Corneil BD
    J Neurophysiol; 2020 May; 123(5):1907-1919. PubMed ID: 32267202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position.
    Blanke O; Seeck M
    Exp Brain Res; 2003 May; 150(2):174-83. PubMed ID: 12677314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements].
    Miki A; Nakajima T; Miyauchi S; Takagi M; Abe H
    Nippon Ganka Gakkai Zasshi; 1996 Jul; 100(7):541-5. PubMed ID: 8741338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
    Basso MA; Pokorny JJ; Liu P
    Eur J Neurosci; 2005 Jul; 22(2):448-64. PubMed ID: 16045498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medial versus lateral frontal lobe contributions to voluntary saccade control as revealed by the study of patients with frontal lobe degeneration.
    Boxer AL; Garbutt S; Rankin KP; Hellmuth J; Neuhaus J; Miller BL; Lisberger SG
    J Neurosci; 2006 Jun; 26(23):6354-63. PubMed ID: 16763044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.