These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9212283)

  • 41. Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials.
    Yamamoto J; Ikeda A; Satow T; Matsuhashi M; Baba K; Yamane F; Miyamoto S; Mihara T; Hori T; Taki W; Hashimoto N; Shibasaki H
    Brain; 2004 Apr; 127(Pt 4):873-87. PubMed ID: 14960503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discrimination of Exner's area and the frontal eye field in humans--functional magnetic resonance imaging during language and saccade tasks.
    Matsuo K; Kato C; Sumiyoshi C; Toma K; Duy Thuy DH; Moriya T; Fukuyama H; Nakai T
    Neurosci Lett; 2003 Apr; 340(1):13-6. PubMed ID: 12648747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional neuroanatomy of smooth pursuit and predictive saccades.
    O'Driscoll GA; Wolff AL; Benkelfat C; Florencio PS; Lal S; Evans AC
    Neuroreport; 2000 Apr; 11(6):1335-40. PubMed ID: 10817617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Smooth eye movements elicited by microstimulation in the primate frontal eye field.
    Gottlieb JP; Bruce CJ; MacAvoy MG
    J Neurophysiol; 1993 Mar; 69(3):786-99. PubMed ID: 8385195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H; Ohlendorf S; Speck O; Sprenger A; Rutschmann RM; Haller S; Greenlee MW
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Saccadic and smooth-pursuit eye movements during reading of drifting texts.
    Valsecchi M; Gegenfurtner KR; Schütz AC
    J Vis; 2013 Aug; 13(10):. PubMed ID: 23956456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional magnetic resonance imaging activations of cortical eye fields during saccades, smooth pursuit, and optokinetic nystagmus.
    Dieterich M; Müller-Schunk S; Stephan T; Bense S; Seelos K; Yousry TA
    Ann N Y Acad Sci; 2009 May; 1164():282-92. PubMed ID: 19645913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deficits of smooth-pursuit eye movement after unilateral frontal lobe lesions.
    Morrow MJ; Sharpe JA
    Ann Neurol; 1995 Apr; 37(4):443-51. PubMed ID: 7717680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey.
    Schaeffer DJ; Gilbert KM; Hori Y; Hayrynen LK; Johnston KD; Gati JS; Menon RS; Everling S
    Neuroimage; 2019 Nov; 202():116147. PubMed ID: 31479755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overlap of saccadic and pursuit eye movement systems in the brain stem reticular formation.
    Yan YJ; Cui DM; Lynch JC
    J Neurophysiol; 2001 Dec; 86(6):3056-60. PubMed ID: 11731560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loss of exploratory vertical saccades after unilateral frontal eye field damage.
    Pflugshaupt T; Nyffeler T; von Wartburg R; Hess CW; Müri RM
    J Neurol Neurosurg Psychiatry; 2008 Apr; 79(4):474-7. PubMed ID: 17951279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study.
    Luna B; Thulborn KR; Strojwas MH; McCurtain BJ; Berman RA; Genovese CR; Sweeney JA
    Cereb Cortex; 1998; 8(1):40-7. PubMed ID: 9510384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys.
    Stanton GB; Deng SY; Goldberg ME; McMullen NT
    J Comp Neurol; 1989 Apr; 282(3):415-27. PubMed ID: 2715390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Guided saccades modulate object and face-specific activity in the fusiform gyrus.
    Morris JP; McCarthy G
    Hum Brain Mapp; 2007 Aug; 28(8):691-702. PubMed ID: 17133398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field.
    Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P
    Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field.
    Peel TR; Johnston K; Lomber SG; Corneil BD
    J Neurophysiol; 2014 Jan; 111(2):415-33. PubMed ID: 24155010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal activity in the caudal frontal eye fields of monkeys during memory-based smooth pursuit eye movements: comparison with the supplementary eye fields.
    Fukushima J; Akao T; Shichinohe N; Kurkin S; Kaneko CR; Fukushima K
    Cereb Cortex; 2011 Aug; 21(8):1910-24. PubMed ID: 21209120
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional Localization of the Frontal Eye Fields in the Common Marmoset Using Microstimulation.
    Selvanayagam J; Johnston KD; Schaeffer DJ; Hayrynen LK; Everling S
    J Neurosci; 2019 Nov; 39(46):9197-9206. PubMed ID: 31582528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans.
    Koyama M; Hasegawa I; Osada T; Adachi Y; Nakahara K; Miyashita Y
    Neuron; 2004 Mar; 41(5):795-807. PubMed ID: 15003178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.