These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 9212385)
1. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Ishaug SL; Crane GM; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG J Biomed Mater Res; 1997 Jul; 36(1):17-28. PubMed ID: 9212385 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040 [TBL] [Abstract][Full Text] [Related]
3. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. Ishaug-Riley SL; Crane GM; Gurlek A; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG J Biomed Mater Res; 1997 Jul; 36(1):1-8. PubMed ID: 9212383 [TBL] [Abstract][Full Text] [Related]
4. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. Holy CE; Shoichet MS; Davies JE J Biomed Mater Res; 2000 Sep; 51(3):376-82. PubMed ID: 10880079 [TBL] [Abstract][Full Text] [Related]
5. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Wake MC; Gerecht PD; Lu L; Mikos AG Biomaterials; 1998 Jul; 19(14):1255-68. PubMed ID: 9720889 [TBL] [Abstract][Full Text] [Related]
6. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI; Bancroft GN; Mikos AG J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795 [TBL] [Abstract][Full Text] [Related]
7. Osteoblast function on synthetic biodegradable polymers. Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284 [TBL] [Abstract][Full Text] [Related]
8. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Goldstein AS; Juarez TM; Helmke CD; Gustin MC; Mikos AG Biomaterials; 2001 Jun; 22(11):1279-88. PubMed ID: 11336300 [TBL] [Abstract][Full Text] [Related]
9. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098 [TBL] [Abstract][Full Text] [Related]
10. In situ forming lactic acid based orthopaedic biomaterials: influence of oligomer chemistry on osteoblast attachment and function. Burdick JA; Mason MN; Anseth KS J Biomater Sci Polym Ed; 2001; 12(11):1253-65. PubMed ID: 11853390 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Thomson RC; Yaszemski MJ; Powers JM; Mikos AG Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
13. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. Lu L; Yaszemski MJ; Mikos AG J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S82-91. PubMed ID: 11314800 [TBL] [Abstract][Full Text] [Related]
14. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. Botchwey EA; Pollack SR; Levine EM; Laurencin CT J Biomed Mater Res; 2001 May; 55(2):242-53. PubMed ID: 11255176 [TBL] [Abstract][Full Text] [Related]
15. Effect of microgrooved poly-l-lactic (PLA) surfaces on proliferation, cytoskeletal organization, and mineralized matrix formation of rat bone marrow cells. Matsuzaka K; Walboomers F; de Ruijter A; Jansen JA Clin Oral Implants Res; 2000 Aug; 11(4):325-33. PubMed ID: 11168225 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material. Elgendy HM; Norman ME; Keaton AR; Laurencin CT Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557 [TBL] [Abstract][Full Text] [Related]
17. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Chen G; Ushida T; Tateishi T Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089 [TBL] [Abstract][Full Text] [Related]
18. Bone generation on PHBV matrices: an in vitro study. Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013 [TBL] [Abstract][Full Text] [Related]
20. Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Peter SJ; Lu L; Kim DJ; Mikos AG Biomaterials; 2000 Jun; 21(12):1207-13. PubMed ID: 10811302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]