These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9212423)

  • 1. Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate.
    Ampe F; Uribelarrea JL; Aragao GM; Lindley ND
    Appl Environ Microbiol; 1997 Jul; 63(7):2765-70. PubMed ID: 9212423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux limitations in the ortho pathway of benzoate degradation of Alcaligenes eutrophus: metabolite overflow and induction of the meta pathway at high substrate concentrations.
    Ampe F; Lindley ND
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1807-17. PubMed ID: 8757743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilation of aromatic compounds by Alcaligenes eutrophus.
    Johnson BF; Stanier RY
    J Bacteriol; 1971 Aug; 107(2):468-75. PubMed ID: 5113598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.
    Ampe F; Lindley ND
    J Bacteriol; 1995 Oct; 177(20):5826-33. PubMed ID: 7592330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the -ketoadipate pathway in Alcaligenes eutrophus.
    Johnson BF; Stanier RY
    J Bacteriol; 1971 Aug; 107(2):476-85. PubMed ID: 5113599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1.
    Lahme S; Trautwein K; Strijkstra A; Dörries M; Wöhlbrand L; Rabus R
    BMC Microbiol; 2014 Oct; 14():269. PubMed ID: 25344702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus.
    Friedrich CG
    J Bacteriol; 1982 Jan; 149(1):203-10. PubMed ID: 6798017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway.
    Nichols NN; Harwood CS
    J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of acetylsalicylic acid by a strain of Acinetobacter lwoffii.
    Grant DJ
    J Appl Bacteriol; 1971 Dec; 34(4):689-98. PubMed ID: 5004245
    [No Abstract]   [Full Text] [Related]  

  • 10. Repression of phenol catabolism by organic acids in Ralstonia eutropha.
    Ampe F; Léonard D; Lindley ND
    Appl Environ Microbiol; 1998 Jan; 64(1):1-6. PubMed ID: 9435054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existence and functions of two enzymes with beta-ketoadipate: succinyl-CoA transferase activity in Pseudomonas florescens.
    Hoet PP; Stanier RY
    Eur J Biochem; 1970 Mar; 13(1):71-6. PubMed ID: 5439081
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus.
    Valentin HE; Zwingmann G; Schönebaum A; Steinbüchel A
    Eur J Biochem; 1995 Jan; 227(1-2):43-60. PubMed ID: 7851418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physiology of aniline catabolism by achromobacter Ir2].
    Rabsch W; Fritsche W
    Z Allg Mikrobiol; 1977; 17(2):139-48. PubMed ID: 868083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis of catabolic function loss in a population of Pseudomonas putida mt-2 during non-limited growth on benzoate.
    Duetz WA; Winson MK; van Andel JG; Williams PA
    J Gen Microbiol; 1991 Jun; 137(6):1363-8. PubMed ID: 1919510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri.
    Söhling B; Gottschalk G
    Eur J Biochem; 1993 Feb; 212(1):121-7. PubMed ID: 8444151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial growth on mercaptosuccinic acid.
    Hall MR; Berk RS
    Can J Microbiol; 1968 May; 14(5):515-23. PubMed ID: 4969281
    [No Abstract]   [Full Text] [Related]  

  • 17. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.
    Schlömann M; Schmidt E; Knackmuss HJ
    J Bacteriol; 1990 Sep; 172(9):5112-8. PubMed ID: 2394679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of succinate dehydrogenase with succinate and oxaloacetate during enzyme activation-deactivation].
    Vinogradov VV; Mandrik KA; Vonsovich VA
    Ukr Biokhim Zh (1978); 1986; 58(2):16-9. PubMed ID: 3705198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control.
    Duetz WA; Marqués S; de Jong C; Ramos JL; van Andel JG
    J Bacteriol; 1994 Apr; 176(8):2354-61. PubMed ID: 8157604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The beta-ketoadipate pathway.
    Stanier RY; Ornston LN
    Adv Microb Physiol; 1973; 9(0):89-151. PubMed ID: 4599397
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.