BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9212714)

  • 1. Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end.
    Ikariyama Y; Nishiguchi S; Koyama T; Kobatake E; Aizawa M; Tsuda M; Nakazawa T
    Anal Chem; 1997 Jul; 69(13):2600-5. PubMed ID: 9212714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways.
    Marqués S; Ramos JL
    Mol Microbiol; 1993 Sep; 9(5):923-9. PubMed ID: 7934920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensing of benzene derivatives in the environment by luminescent Escherichia coli.
    Kobatake E; Niimi T; Haruyama T; Ikariyama Y; Aizawa M
    Biosens Bioelectron; 1995; 10(6-7):601-5. PubMed ID: 7612210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the air.
    Berno E; Pereira Marcondes DF; Ricci Gamalero S; Eandi M
    Ecotoxicol Environ Saf; 2004 Feb; 57(2):118-22. PubMed ID: 14759656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds.
    Behzadian F; Barjeste H; Hosseinkhani S; Zarei AR
    Curr Microbiol; 2011 Feb; 62(2):690-6. PubMed ID: 20872219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53.
    Gallegos MT; Williams PA; Ramos JL
    J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of sigma 54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter.
    Cases I; de Lorenzo V; Pérez-Martín J
    Mol Microbiol; 1996 Jan; 19(1):7-17. PubMed ID: 8821932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XylUW, two genes at the start of the upper pathway operon of TOL plasmid pWW0, appear to play no essential part in determining its catabolic phenotype.
    Williams PA; Shaw LM; Pitt CW; Vrecl M
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():101-107. PubMed ID: 9025283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
    Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A
    Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth.
    Gallegos MT; Marqués S; Ramos JL
    J Bacteriol; 1996 Apr; 178(8):2356-61. PubMed ID: 8636038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds.
    Kim MN; Park HH; Lim WK; Shin HJ
    J Microbiol Methods; 2005 Feb; 60(2):235-45. PubMed ID: 15590098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and functional analysis of the prokaryotic enhancer of the sigma 54-promoters of the TOL plasmid of Pseudomonas putida.
    Pérez-Martín J; de Lorenzo V
    J Mol Biol; 1996 May; 258(4):562-74. PubMed ID: 8636992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes.
    Hugouvieux-Cotte-Pattat N; Köhler T; Rekik M; Harayama S
    J Bacteriol; 1990 Dec; 172(12):6651-60. PubMed ID: 2254244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and evaluation of nagR-nagAa::lux fusion strains in biosensing for salicylic acid derivatives.
    Mitchell RJ; Gu MB
    Appl Biochem Biotechnol; 2005 Mar; 120(3):183-98. PubMed ID: 15767693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line biosensor for the detection of putative toxicity in water contaminants.
    Eltzov E; Slobodnik V; Ionescu RE; Marks RS
    Talanta; 2015 Jan; 132():583-90. PubMed ID: 25476348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and testing of a bacterial biosensor for toluene-based environmental contaminants.
    Willardson BM; Wilkins JF; Rand TA; Schupp JM; Hill KK; Keim P; Jackson PJ
    Appl Environ Microbiol; 1998 Mar; 64(3):1006-12. PubMed ID: 9501440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2.
    Kim J; Pérez-Pantoja D; Silva-Rocha R; Oliveros JC; de Lorenzo V
    Environ Microbiol; 2016 Oct; 18(10):3327-3341. PubMed ID: 26373670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation.
    Wubbolts MG; Reuvekamp P; Witholt B
    Enzyme Microb Technol; 1994 Jul; 16(7):608-15. PubMed ID: 7764991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions.
    Kessler B; Herrero M; Timmis KN; de Lorenzo V
    J Bacteriol; 1994 Jun; 176(11):3171-6. PubMed ID: 8195070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.