BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9212747)

  • 1. Reactive oxygen species cause direct damage of Engelbreth-Holm-Swarm matrix.
    Riedle B; Kerjaschki D
    Am J Pathol; 1997 Jul; 151(1):215-31. PubMed ID: 9212747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components.
    Grant DS; Kleinman HK; Leblond CP; Inoue S; Chung AE; Martin GR
    Am J Anat; 1985 Dec; 174(4):387-98. PubMed ID: 4083259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of extracellular matrix components on axonal outgrowth from peripheral nerves of adult animals in vitro.
    Tonge DA; Golding JP; Edbladh M; Kroon M; Ekström PE; Edström A
    Exp Neurol; 1997 Jul; 146(1):81-90. PubMed ID: 9225741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids.
    Chakrabarti SK; Bai C; Subramanian KS
    Toxicol Appl Pharmacol; 2001 Feb; 170(3):153-65. PubMed ID: 11162780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invasive growth and topoisomerase-switch induced by tumorous extracellular matrix in osteosarcoma cell culture.
    Harisi R; Dudás J; Timár F; Pogány G; Timár J; Kovalszky I; Szendroi M; Jeney A
    Cell Biol Int; 2005 Nov; 29(11):959-67. PubMed ID: 16242975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.
    Guthrie HD; Welch GR
    J Anim Sci; 2006 Aug; 84(8):2089-100. PubMed ID: 16864869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the 72-kDa (MMP-2) and 92-kDa (MMP-9) gelatinase/type IV collagenase in preparations of laminin and Matrigel.
    Mackay AR; Gomez DE; Cottam DW; Rees RC; Nason AM; Thorgeirsson UP
    Biotechniques; 1993 Dec; 15(6):1048-51. PubMed ID: 8292337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells.
    McGuire PG; Seeds NW
    J Cell Biochem; 1989 Jun; 40(2):215-27. PubMed ID: 2504731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered proliferation of retinal microvascular cells on glycated matrix.
    Kalfa TA; Gerritsen ME; Carlson EC; Binstock AJ; Tsilibary EC
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2358-67. PubMed ID: 7591625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryofixation of basement membranes followed by freeze substitution or freeze drying demonstrates that they are composed of a tridimensional network of irregular cords.
    Chan FL; Inoue S; Leblond CP
    Anat Rec; 1993 Feb; 235(2):191-205. PubMed ID: 8420389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive deposition of basement membrane by tumours: a prognostic factor? A reappraisal.
    Noël A; Fontes R; Emonard H; Foidart JM
    Epithelial Cell Biol; 1993 Oct; 2(4):150-4. PubMed ID: 8269030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective degradation of basement membrane macromolecules by metastatic melanoma cells.
    Kramer RH; Vogel KG
    J Natl Cancer Inst; 1984 Apr; 72(4):889-99. PubMed ID: 6584663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of basement membrane formation by a nidogen-binding laminin gamma1-chain fragment in human skin-organotypic cocultures.
    Breitkreutz D; Mirancea N; Schmidt C; Beck R; Werner U; Stark HJ; Gerl M; Fusenig NE
    J Cell Sci; 2004 May; 117(Pt 12):2611-22. PubMed ID: 15159456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic structure of basement membranes is a fine network of "cords," irregular anastomosing strands.
    Inoue S
    Microsc Res Tech; 1994 May; 28(1):29-47. PubMed ID: 8061356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of redox signaling in mammalian cells enabled by controlled photogeneration of reactive oxygen species.
    Posen Y; Kalchenko V; Seger R; Brandis A; Scherz A; Salomon Y
    J Cell Sci; 2005 May; 118(Pt 9):1957-69. PubMed ID: 15840654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of SPAAT, the 44-residue C-terminal peptide of alpha 1-antitrypsin, to proteins of the extracellular matrix.
    Niemann MA; Baggott JE; Miller EJ
    J Cell Biochem; 1997 Sep; 66(3):346-57. PubMed ID: 9257191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic regulation of angiogenesis by reactive oxygen species.
    Huang SS; Zheng RL
    Pharmazie; 2006 Mar; 61(3):223-9. PubMed ID: 16599264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMP-9 from TNF alpha-stimulated keratinocytes binds to cell membranes and type I collagen: a cause for extended matrix degradation in inflammation?
    Mäkelä M; Salo T; Larjava H
    Biochem Biophys Res Commun; 1998 Dec; 253(2):325-35. PubMed ID: 9878537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free translation products of basement membrane RNA from the EHS tumor.
    Laurent M; Martin GR; Sobel ME
    Biochim Biophys Acta; 1987 Apr; 908(3):241-50. PubMed ID: 3105583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.