These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9212828)

  • 1. N-ethylmaleimide (NEM) can significantly improve in situ hybridization results using 35S-labeled oligodeoxynucleotide or complementary RNA probes.
    Zoeller RT; Fletcher DL; Butnariu O; Lowry CA; Moore FL
    J Histochem Cytochem; 1997 Jul; 45(7):1035-41. PubMed ID: 9212828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 35S- and digoxigenin-labeled RNA and oligonucleotide probes for in situ hybridization. Expression of mRNA of the seminal vesicle secretion protein II and androgen receptor genes in the rat prostate.
    Komminoth P; Merk FB; Leav I; Wolfe HJ; Roth J
    Histochemistry; 1992 Nov; 98(4):217-28. PubMed ID: 1459861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal intensities of radiolabeled cRNA probes used alone or in combination with non-isotopic in situ hybridization histochemistry.
    Son JH; Winzer-Serhan UH
    J Neurosci Methods; 2009 May; 179(2):159-65. PubMed ID: 19428522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased concentrations of radioisotopically-labeled complementary ribonucleic acid probe, dextran sulfate, and dithiothreitol in the hybridization buffer can improve results of in situ hybridization histochemistry.
    Hrabovszky E; Petersen SL
    J Histochem Cytochem; 2002 Oct; 50(10):1389-400. PubMed ID: 12364572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 33P is preferable to 35S for labeling probes used in in situ hybridization.
    McLaughlin SK; Margolskee RF
    Biotechniques; 1993 Sep; 15(3):506-11. PubMed ID: 8217166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of novel formulations of 35S- and 33P-labelled nucleotides for in situ hybridization.
    Durrant I; Dacre B; Cunningham M
    Histochem J; 1995 Jan; 27(1):89-93. PubMed ID: 7713759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ hybridization, in situ transcription, and in situ polymerase chain reaction.
    De Bault LE; Gu J
    Scanning Microsc Suppl; 1996; 10():27-44; discussion 44-7. PubMed ID: 9601527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digoxigenin as an alternative probe labeling for in situ hybridization.
    Komminoth P
    Diagn Mol Pathol; 1992 Jun; 1(2):142-50. PubMed ID: 1342960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoradiographic visualization of 35S-labeled cRNA probes combined with immunoperoxidase detection of choleragenoid: a double-labeling light microscopic method for in situ hybridization and retrograde tract tracing.
    Hermanson O; Ericson H; Sanchez-Watts G; Watts AG; Blomqvist A
    J Histochem Cytochem; 1994 Jun; 42(6):827-31. PubMed ID: 7514627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ hybridization: use of 35S-labeled probes on paraffin tissue sections.
    Micales BK; Lyons GE
    Methods; 2001 Apr; 23(4):313-23. PubMed ID: 11316432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of cannabinoid CB1 receptor mRNA using ribonucleotide probes: methods for double- and single-label in situ hybridization.
    Hohmann AG
    Methods Mol Med; 2006; 123():71-89. PubMed ID: 16506402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ hybridization of cytokine mRNA using alkaline phosphatase-labelled oligodeoxynucleotide probes.
    Clausen B; Fenger C; Finsen B
    Methods Mol Biol; 2013; 1041():83-91. PubMed ID: 23813372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods to enhance signal using isotopic in situ hybridization.
    Ky B; Shughrue PJ
    J Histochem Cytochem; 2002 Aug; 50(8):1031-7. PubMed ID: 12133906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive alternative for microRNA in situ hybridizations using probes of 2'-O-methyl RNA + LNA.
    Søe MJ; Møller T; Dufva M; Holmstrøm K
    J Histochem Cytochem; 2011 Jul; 59(7):661-72. PubMed ID: 21525189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid and convenient method to prepare DIG-labelled RNA probes for use in non-radioactive in situ hybridization.
    Gandrillon O; Solari F; Legrand C; Jurdic P; Samarut J
    Mol Cell Probes; 1996 Feb; 10(1):51-5. PubMed ID: 8684376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General introduction to in situ hybridization protocol using nonradioactively labeled probes to detect mRNAs on tissue sections.
    Lee D; Xiong S; Xiong WC
    Methods Mol Biol; 2013; 1018():165-74. PubMed ID: 23681627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Detection of receptor mRNAs using nonradioactive in situ hybridization].
    Shin M; Koji T
    Nihon Rinsho; 1998 Jul; 56(7):1667-73. PubMed ID: 9702035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification.
    Qian X; Bauer RA; Xu HS; Lloyd RV
    Appl Immunohistochem Mol Morphol; 2001 Mar; 9(1):61-9. PubMed ID: 11277417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and efficient generation of PCR-derived riboprobe templates for in situ hybridization histochemistry.
    Sitzmann JH; LeMotte PK
    J Histochem Cytochem; 1993 May; 41(5):773-6. PubMed ID: 7682230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged hybridization with a cRNA probe improves the signal to noise ratio for in-tube in situ hybridization for quantification of mRNA after fluorescence-activated cell sorting.
    Yamada H; Yamakawa N; Watanabe M; Hidaka Y; Iwatani Y; Takano T
    Biotech Histochem; 2012 Jul; 87(5):366-71. PubMed ID: 22443863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.