These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 9212865)
1. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH. Srivastava A; Krishnamoorthy G Anal Biochem; 1997 Jul; 249(2):140-6. PubMed ID: 9212865 [TBL] [Abstract][Full Text] [Related]
2. Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1. Wieder ED; Hang H; Fox MH Cytometry; 1993 Nov; 14(8):916-21. PubMed ID: 8287734 [TBL] [Abstract][Full Text] [Related]
3. Ratiometric measurement of intracellular pH in cultured human keratinocytes using carboxy-SNARF-1 and flow cytometry. van Erp PE; Jansen MJ; de Jongh GJ; Boezeman JB; Schalkwijk J Cytometry; 1991; 12(2):127-32. PubMed ID: 2049969 [TBL] [Abstract][Full Text] [Related]
4. Detection of apoptosis by flow cytometry of cells simultaneously stained for intracellular pH (carboxy SNARF-1) and membrane permeability (Hoechst 33342). Reynolds JE; Li J; Eastman A Cytometry; 1996 Dec; 25(4):349-57. PubMed ID: 8946142 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors. Chen YC; Ostafin A; Mizukami H Nanotechnology; 2010 May; 21(21):215503. PubMed ID: 20431200 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence behavior of the pH-sensitive probe carboxy SNARF-1 in suspension of liposomes. Vecer J; Holoubek A; Sigler K Photochem Photobiol; 2001 Jul; 74(1):8-13. PubMed ID: 11460541 [TBL] [Abstract][Full Text] [Related]
7. A newly designed cell-permeable SNARF derivative as an effective intracellular pH indicator. Nakata E; Yukimachi Y; Nazumi Y; Uto Y; Maezawa H; Hashimoto T; Okamoto Y; Hori H Chem Commun (Camb); 2010 May; 46(20):3526-8. PubMed ID: 20379600 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors. Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. Orte A; Alvarez-Pez JM; Ruedas-Rama MJ ACS Nano; 2013 Jul; 7(7):6387-95. PubMed ID: 23808971 [TBL] [Abstract][Full Text] [Related]
10. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission. Pal R; Parker D Org Biomol Chem; 2008 Mar; 6(6):1020-33. PubMed ID: 18327327 [TBL] [Abstract][Full Text] [Related]
11. Cell type and spatial location dependence of cytoplasmic viscosity measured by time-resolved fluorescence microscopy. Srivastava A; Krishnamoorthy G Arch Biochem Biophys; 1997 Apr; 340(2):159-67. PubMed ID: 9143317 [TBL] [Abstract][Full Text] [Related]
12. Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. O'Connor N; Silver RB Methods Cell Biol; 2007; 81():415-33. PubMed ID: 17519177 [No Abstract] [Full Text] [Related]
13. Ratiometric Imaging of Extracellular pH in Dental Biofilms. Schlafer S; Dige I J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023830 [TBL] [Abstract][Full Text] [Related]