These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9212867)

  • 1. Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation.
    Christensen LL
    Anal Biochem; 1997 Jul; 249(2):153-64. PubMed ID: 9212867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation.
    Richalet-Sécordel PM; Rauffer-Bruyère N; Christensen LL; Ofenloch-Haehnle B; Seidel C; Van Regenmortel MH
    Anal Biochem; 1997 Jul; 249(2):165-73. PubMed ID: 9212868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K; Mafé S; Stroeve P
    J Colloid Interface Sci; 2006 Apr; 296(2):527-37. PubMed ID: 16359694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics.
    Glaser RW
    Anal Biochem; 1993 Aug; 213(1):152-61. PubMed ID: 8238868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of mass transport-limited binding kinetics in evanescent wave biosensors.
    Schuck P; Minton AP
    Anal Biochem; 1996 Sep; 240(2):262-72. PubMed ID: 8811920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of analyte-receptor binding kinetics for biosensor applications: an overview of the influence of the fractal dimension on the surface on the binding rate coefficient.
    Ramakrishnan A; Sadana A
    Biotechnol Appl Biochem; 1999 Feb; 29 ( Pt 1)():45-57. PubMed ID: 9889084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.
    Tang L; Kwon HJ; Kang KA
    Biotechnol Bioeng; 2004 Dec; 88(7):869-79. PubMed ID: 15515165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel nanolayer biosensor principle.
    Jennissen HP; Zumbrink T
    Biosens Bioelectron; 2004 Apr; 19(9):987-97. PubMed ID: 15018953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of transport on the kinetics of binding to surface receptors: application to cells and BIAcore.
    Goldstein B; Coombs D; He X; Pineda AR; Wofsy C
    J Mol Recognit; 1999; 12(5):293-9. PubMed ID: 10556877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model and simulation of multivalent binding to fixed ligands.
    Müller KM; Arndt KM; Plückthun A
    Anal Biochem; 1998 Aug; 261(2):149-58. PubMed ID: 9716417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand loading at the surface of an optical biosensor and its effect upon the kinetics of protein-protein interactions.
    Edwards PR; Lowe PA; Leatherbarrow RJ
    J Mol Recognit; 1997; 10(3):128-34. PubMed ID: 9408828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical and experimental study of competition between solution and surface receptors for ligand in a Biacore flow cell.
    He X; Coombs D; Myszka DG; Goldstein B
    Bull Math Biol; 2006 Jul; 68(5):1125-50. PubMed ID: 16804651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background.
    Derrick TS; McCord EF; Larive CK
    J Magn Reson; 2002 Apr; 155(2):217-25. PubMed ID: 12036332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport.
    Schuck P
    Biophys J; 1996 Mar; 70(3):1230-49. PubMed ID: 8785280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single- and dual-fractal analysis of hybridization binding kinetics: biosensor applications.
    Sadana A; Vo-Dinh T
    Biotechnol Prog; 1998; 14(5):782-90. PubMed ID: 9758669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip.
    Nieba L; Nieba-Axmann SE; Persson A; Hämäläinen M; Edebratt F; Hansson A; Lidholm J; Magnusson K; Karlsson AF; Plückthun A
    Anal Biochem; 1997 Oct; 252(2):217-28. PubMed ID: 9344407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase from tern and whale using the BIAcore biosensor: effect of immobilization level and flow rate on kinetic analysis.
    Kortt AA; Nice E; Gruen LC
    Anal Biochem; 1999 Aug; 273(1):133-41. PubMed ID: 10452809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of association rate constants by an optical biosensor using initial rate analysis.
    Edwards PR; Leatherbarrow RJ
    Anal Biochem; 1997 Mar; 246(1):1-6. PubMed ID: 9056175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of mass transfer limitation in biomolecular assays.
    Nadim A
    Ann N Y Acad Sci; 2009 Apr; 1161():34-43. PubMed ID: 19426304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data.
    Myszka DG; He X; Dembo M; Morton TA; Goldstein B
    Biophys J; 1998 Aug; 75(2):583-94. PubMed ID: 9675161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.