BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9212939)

  • 1. Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Tayama E; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 Jul; 21(7):686-90. PubMed ID: 9212939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface roughness on hemolysis in a pivot bearing supported Gyro centrifugal pump (C1E3).
    Takami Y; Makinouchi K; Nakazawa T; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1996 Nov; 20(11):1155-61. PubMed ID: 8908324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolytic effects of surface roughness of a pump housing in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 May; 21(5):428-32. PubMed ID: 9129778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface roughness on hemolysis in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    ASAIO J; 1996; 42(5):M858-62. PubMed ID: 8945006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolytic effect of the secondary vane incorporated into the back side of the impeller.
    Ohara Y; Murase M; Nosé Y
    Artif Organs; 1997 Jul; 21(7):694-9. PubMed ID: 9212941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hemolysis test of the Gyro C1E3 pump in pulsatile mode.
    Tayama E; Nakazawa T; Takami Y; Makinouchi K; Ohtsubo S; Ohashi Y; Andrade AJ; Glueck J; Mueller J; Nosé Y
    Artif Organs; 1997 Jul; 21(7):675-9. PubMed ID: 9304391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemolytic characteristics of a pivot bearing supported Gyro centrifugal pump (C1E3) simulating various clinical applications.
    Takami Y; Makinouchi K; Nakazawa T; Benkowski R; Glueck J; Ohara Y; Nosé Y
    Artif Organs; 1996 Sep; 20(9):1042-9. PubMed ID: 8864026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow visualization study to investigate the secondary flow behind the impeller in the Gyro centrifugal pump.
    Ichikawa S; Nonaka K; Linneweber J; Kawahito S; Motomura M; Nishimura I; Glueck J; Shinohara T; Nosé Y
    Artif Organs; 2002 Dec; 26(12):1050-2. PubMed ID: 12460388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impeller design for a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Yoshikawa M; Nakata K; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2000 Oct; 24(10):821-5. PubMed ID: 11091172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material of the double pivot bearing system in the Gyro C1E3 centrifugal pump.
    Takami Y; Nakazawa T; Makinouchi K; Benkowski R; Glueck J; Nosé Y
    Artif Organs; 1997 Feb; 21(2):143-7. PubMed ID: 9028497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety margin of magnetic coupling distance in decoupling of a pivot bearing-supported Gyro centrifugal pump (C1E3).
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1996 Jul; 20(7):817-9. PubMed ID: 8828776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of a pivot bearing system on a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):258-63. PubMed ID: 8694697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative approach to control spinning stability of the impeller in the pivot bearing-supported centrifugal pump.
    Takami Y; Makinouchi K; Otsuka G; Nosé Y
    Artif Organs; 1997 Dec; 21(12):1292-6. PubMed ID: 9423982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Gyro C1E3 and BioMedicus centrifugal pump performances during cardiopulmonary bypass.
    Nakazawa T; Takami Y; Makinouchi K; Gay J; Taylor D; Ueyama K; Ohashi Y; Kawahito K; Tayama E; Glueck J; Nosé Y
    Artif Organs; 1997 Jul; 21(7):782-5. PubMed ID: 9212958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impeller inner diameter in a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2002 Jan; 26(1):67-71. PubMed ID: 11872016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of a tiny Gyro centrifugal pump as an implantable ventricular assist device.
    Yoshikawa M; Nakata K; Ohtsuka G; Takano T; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 1999 Aug; 23(8):774-9. PubMed ID: 10463506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemolysis in different centrifugal pumps.
    Kawahito K; Nosé Y
    Artif Organs; 1997 Apr; 21(4):323-6. PubMed ID: 9096806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T
    Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.