These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 9212956)
1. A clinical study for the durability of oxygenators on cardiopulmonary support. Usui A; Murakami F; Ooshima H; Tomita Y; Yoshida K; Hibi M; Kawamura M; Muras M Artif Organs; 1997 Jul; 21(7):772-8. PubMed ID: 9212956 [TBL] [Abstract][Full Text] [Related]
2. Heparin coating extends the durability of oxygenators used for cardiopulmonary support. Usui A; Hiroura M; Kawamura M Artif Organs; 1999 Sep; 23(9):840-4. PubMed ID: 10491032 [TBL] [Abstract][Full Text] [Related]
3. Pulsatile and nonpulsatile extracorporeal circulation using Capiox E terumo oxygenator: a comparison study with Ultrox and Maxima membrane oxygenators. Minami K; Bairaktaris A; Murray E; Weitkemper H; Dramburg W; Körfer R J Cardiovasc Surg (Torino); 1997 Jun; 38(3):227-32. PubMed ID: 9219471 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the Gyro C1E3 and BioMedicus centrifugal pump performances during cardiopulmonary bypass. Nakazawa T; Takami Y; Makinouchi K; Gay J; Taylor D; Ueyama K; Ohashi Y; Kawahito K; Tayama E; Glueck J; Nosé Y Artif Organs; 1997 Jul; 21(7):782-5. PubMed ID: 9212958 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
7. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates. Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384 [TBL] [Abstract][Full Text] [Related]
8. Comparison of bubble and membrane oxygenators in short and long perfusions. Clark RE; Beauchamp RA; Magrath RA; Brooks JD; Ferguson TB; Weldon CS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):655-66. PubMed ID: 491720 [TBL] [Abstract][Full Text] [Related]
9. Heparin-coated equipment reduces the risk of oxygenator failure. Wahba A; Philipp A; Behr R; Birnbaum DE Ann Thorac Surg; 1998 May; 65(5):1310-2. PubMed ID: 9594857 [TBL] [Abstract][Full Text] [Related]
10. Clinical evaluation of nine hollow-fibre membrane oxygenators. Segers PA; Heida JF; de Vries I; Maas C; Boogaart AJ; Eilander S Perfusion; 2001 Mar; 16(2):95-106. PubMed ID: 11334201 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759 [TBL] [Abstract][Full Text] [Related]
12. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use. Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663 [TBL] [Abstract][Full Text] [Related]
13. Cardiopulmonary bypass without systemic heparinization. Performance of heparin-coated oxygenators in comparison with classic membrane and bubble oxygenators. von Segesser LK; Turina M J Thorac Cardiovasc Surg; 1989 Sep; 98(3):386-96. PubMed ID: 2770320 [TBL] [Abstract][Full Text] [Related]
14. Clinical evaluation of the oxygenation capacity and controllability of 15 commercially available membrane oxygenators during alpha-stat regulated hypothermic cardiopulmonary bypass. Stinkens D; Himpe D; Thyssen P; De Bakker A; Smets W; Borms S; Suy M; Muylaert P; Van Hove M; Theunissen W; Van Cauwelaert P Perfusion; 1996 Nov; 11(6):471-80. PubMed ID: 8971949 [TBL] [Abstract][Full Text] [Related]
17. Clinical comparison between membrane and bubble oxygenators in cardiopulmonary bypass. Fenchel G; Seybold-Epting W; Schmidt K; Stunkat R; Hoffmeister HE J Cardiovasc Surg (Torino); 1979; 20(4):419-22. PubMed ID: 479280 [TBL] [Abstract][Full Text] [Related]
18. Clinical evaluation of five commercially available adult oxygenators in terms of pressure drop during normothermic and hypothermic cardiopulmonary bypass. Ji B; Wang H; Miao N; Xing J; Liu W; Liu R; Long C Int J Artif Organs; 2010 May; 33(5):310-6. PubMed ID: 20593353 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
20. Disconnection of Cobe SMARxT tubing from the venous outlet of the Terumo Capiox SX25RX oxygenator during cardiopulmonary bypass. Ottens J; Baker RA; Sanderson AJ; Newland RF J Extra Corpor Technol; 2010 Jun; 42(2):153-7. PubMed ID: 20648902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]