These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9212989)
1. Contribution of hydrophobicity of nonionic detergents to membrane lipid fluidity and disopyramide uptake by rat intestinal brush-border membrane vesicles. Koga K; Murakami M; Kawashima S Biol Pharm Bull; 1997 Jun; 20(6):674-9. PubMed ID: 9212989 [TBL] [Abstract][Full Text] [Related]
2. Modification of ceftibuten transport by changes in lipid fluidity caused by fatty acid glycerol esters. Koga K; Murakami M; Kawashima S Biol Pharm Bull; 1999 Jan; 22(1):103-6. PubMed ID: 9989674 [TBL] [Abstract][Full Text] [Related]
3. Effects of phospholipid or cholesterol enrichment of rat intestinal brush border membrane on membrane order and transport of calcium. Schedl HP; Wilson HD; Mathur SN; Murthy S; Field FJ Metabolism; 1989 Dec; 38(12):1164-9. PubMed ID: 2593830 [TBL] [Abstract][Full Text] [Related]
4. Modification of ceftibuten transport by the addition of non-ionic surfactants. Koga K; Ohyashiki T; Murakami M; Kawashima S Eur J Pharm Biopharm; 2000 Jan; 49(1):17-25. PubMed ID: 10613923 [TBL] [Abstract][Full Text] [Related]
5. Dietary triacylglycerol modulates sodium-dependent D-glucose transport, fluidity and fatty acid composition of rat small intestinal brush-border membrane. Brasitus TA; Dudeja PK; Bolt MJ; Sitrin MD; Baum C Biochim Biophys Acta; 1989 Feb; 979(2):177-86. PubMed ID: 2923876 [TBL] [Abstract][Full Text] [Related]
6. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat. Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959 [TBL] [Abstract][Full Text] [Related]
7. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde. Ohyashiki T; Sakata N; Matsui K J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807 [TBL] [Abstract][Full Text] [Related]
8. Vitamin D and enterocyte brush border membrane calcium transport and fluidity in the rat. Schedl HP; Ronnenberg W; Christensen KK; Hollis BW Metabolism; 1994 Sep; 43(9):1093-103. PubMed ID: 8084284 [TBL] [Abstract][Full Text] [Related]
9. Effects of fatty acid sucrose esters on ceftibuten transport by rat intestinal brush-border membrane vesicles. Koga K; Murakami M; Kawashima S Biol Pharm Bull; 1998 Jul; 21(7):747-51. PubMed ID: 9703261 [TBL] [Abstract][Full Text] [Related]
11. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C. Mizuno M; Yoshino H; Hashida M; Sezaki H Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535 [TBL] [Abstract][Full Text] [Related]
12. The relationship of membrane fluidity to calcium flux in chick intestinal brush border membranes. Bikle DD; Whitney J; Munson S Endocrinology; 1984 Jan; 114(1):260-7. PubMed ID: 6546306 [TBL] [Abstract][Full Text] [Related]
13. Effect of neuraminidase treatment on the lipid fluidity of the intestinal brush-border membranes. Ohyashiki T; Taka M; Mohri T Biochim Biophys Acta; 1987 Nov; 905(1):57-64. PubMed ID: 3676314 [TBL] [Abstract][Full Text] [Related]
14. Differential modulation of human small intestinal brush-border membrane hemileaflet fluidity affects leucine aminopeptidase activity and transport of D-glucose and L-glutamate. Dudeja PK; Harig JM; Wali RK; Knaup SM; Ramaswamy K; Brasitus TA Arch Biochem Biophys; 1991 Feb; 284(2):338-45. PubMed ID: 1671193 [TBL] [Abstract][Full Text] [Related]
15. Thyroid hormones increase Na+-Pi co-transport activity in intestinal brush border membrane: role of membrane lipid composition and fluidity. Prasad R; Kumar V Mol Cell Biochem; 2005 Oct; 278(1-2):195-202. PubMed ID: 16180105 [TBL] [Abstract][Full Text] [Related]
16. Modulation of rat distal colonic brush-border membrane Na+-H+ exchange by dexamethasone: role of lipid fluidity. Dudeja PK; Foster ES; Brasitus TA Biochim Biophys Acta; 1987 Dec; 905(2):485-93. PubMed ID: 2825788 [TBL] [Abstract][Full Text] [Related]
17. Characterization and modulation of rat small intestinal brush-border membrane transbilayer fluidity. Dudeja PK; Wali RK; Harig JM; Brasitus TA Am J Physiol; 1991 Apr; 260(4 Pt 1):G586-94. PubMed ID: 2018133 [TBL] [Abstract][Full Text] [Related]
18. Relation between Ca2+ uptake and fluidity of brush-border membranes isolated from rabbit small intestine and incubated with fatty acids and methyl oleate. Merrill AR; Aubry H; Proulx P; Szabo AG Biochim Biophys Acta; 1987 Jan; 896(1):89-95. PubMed ID: 3790590 [TBL] [Abstract][Full Text] [Related]
19. Effect of chlorpromazine on the permeability of beta-lactam antibiotics across rat intestinal brush border membrane vesicles. Iseki K; Sugawara M; Saitoh H; Miyazaki K; Arita T J Pharm Pharmacol; 1988 Oct; 40(10):701-5. PubMed ID: 2907536 [TBL] [Abstract][Full Text] [Related]
20. Relationship of alcohol-induced changes in Mg(2+)-ATPase activity of rabbit intestinal brush border membrane with changes in fluidity of its lipid bilayer. Kitagawa S; Sugaya Y; Nishizawa M; Hirata H J Membr Biol; 1995 Jul; 146(2):193-9. PubMed ID: 7473688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]