BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9212989)

  • 1. Contribution of hydrophobicity of nonionic detergents to membrane lipid fluidity and disopyramide uptake by rat intestinal brush-border membrane vesicles.
    Koga K; Murakami M; Kawashima S
    Biol Pharm Bull; 1997 Jun; 20(6):674-9. PubMed ID: 9212989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of ceftibuten transport by changes in lipid fluidity caused by fatty acid glycerol esters.
    Koga K; Murakami M; Kawashima S
    Biol Pharm Bull; 1999 Jan; 22(1):103-6. PubMed ID: 9989674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phospholipid or cholesterol enrichment of rat intestinal brush border membrane on membrane order and transport of calcium.
    Schedl HP; Wilson HD; Mathur SN; Murthy S; Field FJ
    Metabolism; 1989 Dec; 38(12):1164-9. PubMed ID: 2593830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of ceftibuten transport by the addition of non-ionic surfactants.
    Koga K; Ohyashiki T; Murakami M; Kawashima S
    Eur J Pharm Biopharm; 2000 Jan; 49(1):17-25. PubMed ID: 10613923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary triacylglycerol modulates sodium-dependent D-glucose transport, fluidity and fatty acid composition of rat small intestinal brush-border membrane.
    Brasitus TA; Dudeja PK; Bolt MJ; Sitrin MD; Baum C
    Biochim Biophys Acta; 1989 Feb; 979(2):177-86. PubMed ID: 2923876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat.
    Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y
    J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D and enterocyte brush border membrane calcium transport and fluidity in the rat.
    Schedl HP; Ronnenberg W; Christensen KK; Hollis BW
    Metabolism; 1994 Sep; 43(9):1093-103. PubMed ID: 8084284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fatty acid sucrose esters on ceftibuten transport by rat intestinal brush-border membrane vesicles.
    Koga K; Murakami M; Kawashima S
    Biol Pharm Bull; 1998 Jul; 21(7):747-51. PubMed ID: 9703261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative and drug-induced alterations in brush border membrane hemileaflet fluidity, functional consequences for glucose transport.
    Jourd'heuil D; Meddings JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):342-53. PubMed ID: 11342171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Yoshino H; Hashida M; Sezaki H
    Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of membrane fluidity to calcium flux in chick intestinal brush border membranes.
    Bikle DD; Whitney J; Munson S
    Endocrinology; 1984 Jan; 114(1):260-7. PubMed ID: 6546306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of neuraminidase treatment on the lipid fluidity of the intestinal brush-border membranes.
    Ohyashiki T; Taka M; Mohri T
    Biochim Biophys Acta; 1987 Nov; 905(1):57-64. PubMed ID: 3676314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential modulation of human small intestinal brush-border membrane hemileaflet fluidity affects leucine aminopeptidase activity and transport of D-glucose and L-glutamate.
    Dudeja PK; Harig JM; Wali RK; Knaup SM; Ramaswamy K; Brasitus TA
    Arch Biochem Biophys; 1991 Feb; 284(2):338-45. PubMed ID: 1671193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid hormones increase Na+-Pi co-transport activity in intestinal brush border membrane: role of membrane lipid composition and fluidity.
    Prasad R; Kumar V
    Mol Cell Biochem; 2005 Oct; 278(1-2):195-202. PubMed ID: 16180105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of rat distal colonic brush-border membrane Na+-H+ exchange by dexamethasone: role of lipid fluidity.
    Dudeja PK; Foster ES; Brasitus TA
    Biochim Biophys Acta; 1987 Dec; 905(2):485-93. PubMed ID: 2825788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and modulation of rat small intestinal brush-border membrane transbilayer fluidity.
    Dudeja PK; Wali RK; Harig JM; Brasitus TA
    Am J Physiol; 1991 Apr; 260(4 Pt 1):G586-94. PubMed ID: 2018133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between Ca2+ uptake and fluidity of brush-border membranes isolated from rabbit small intestine and incubated with fatty acids and methyl oleate.
    Merrill AR; Aubry H; Proulx P; Szabo AG
    Biochim Biophys Acta; 1987 Jan; 896(1):89-95. PubMed ID: 3790590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chlorpromazine on the permeability of beta-lactam antibiotics across rat intestinal brush border membrane vesicles.
    Iseki K; Sugawara M; Saitoh H; Miyazaki K; Arita T
    J Pharm Pharmacol; 1988 Oct; 40(10):701-5. PubMed ID: 2907536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of alcohol-induced changes in Mg(2+)-ATPase activity of rabbit intestinal brush border membrane with changes in fluidity of its lipid bilayer.
    Kitagawa S; Sugaya Y; Nishizawa M; Hirata H
    J Membr Biol; 1995 Jul; 146(2):193-9. PubMed ID: 7473688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.