These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 9213017)
1. Effects of anteversion on femoral bone mineral density and geometry measured by dual energy X-ray absorptiometry: a cadaver study. Cheng XG; Nicholson PH; Boonen S; Brys P; Lowet G; Nijs J; Dequeker J Bone; 1997 Jul; 21(1):113-7. PubMed ID: 9213017 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Cheng XG; Lowet G; Boonen S; Nicholson PH; Brys P; Nijs J; Dequeker J Bone; 1997 Mar; 20(3):213-8. PubMed ID: 9071471 [TBL] [Abstract][Full Text] [Related]
3. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Pulkkinen P; Partanen J; Jalovaara P; Jämsä T Osteoporos Int; 2004 Apr; 15(4):274-80. PubMed ID: 14760516 [TBL] [Abstract][Full Text] [Related]
4. Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Gnudi S; Ripamonti C; Lisi L; Fini M; Giardino R; Giavaresi G Osteoporos Int; 2002 Jan; 13(1):69-73. PubMed ID: 11878458 [TBL] [Abstract][Full Text] [Related]
5. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Maeda Y; Sugano N; Saito M; Yonenobu K Clin Orthop Relat Res; 2011 Mar; 469(3):884-9. PubMed ID: 20725817 [TBL] [Abstract][Full Text] [Related]
6. Assessment of femoral neck strength by 3-dimensional X-ray absorptiometry. Le Bras A; Kolta S; Soubrane P; Skalli W; Roux C; Mitton D J Clin Densitom; 2006; 9(4):425-30. PubMed ID: 17097528 [TBL] [Abstract][Full Text] [Related]
7. Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Gnudi S; Ripamonti C; Gualtieri G; Malavolta N Br J Radiol; 1999 Aug; 72(860):729-33. PubMed ID: 10624337 [TBL] [Abstract][Full Text] [Related]
8. Ex Vivo Evaluation of Hip Fracture Risk by Proximal Femur Geometry and Bone Mineral Density in Elderly Chinese Women. Yang XJ; Sang HX; Bai B; Ma XY; Xu C; Lei W; Zhang Y Med Sci Monit; 2018 Oct; 24():7438-7443. PubMed ID: 30334549 [TBL] [Abstract][Full Text] [Related]
9. Cortical thickness in the intertrochanteric region may be relevant to hip fracture type. Zhuang H; Li Y; Lin J; Cai D; Cai S; Yan L; Yao X BMC Musculoskelet Disord; 2017 Jul; 18(1):305. PubMed ID: 28720137 [TBL] [Abstract][Full Text] [Related]
10. Hip fracture risk and proximal femur geometry from DXA scans. Bergot C; Bousson V; Meunier A; Laval-Jeantet M; Laredo JD Osteoporos Int; 2002 Jul; 13(7):542-50. PubMed ID: 12111014 [TBL] [Abstract][Full Text] [Related]
11. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Lang TF; Keyak JH; Heitz MW; Augat P; Lu Y; Mathur A; Genant HK Bone; 1997 Jul; 21(1):101-8. PubMed ID: 9213015 [TBL] [Abstract][Full Text] [Related]
12. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Pulkkinen P; Jämsä T; Lochmüller EM; Kuhn V; Nieminen MT; Eckstein F Osteoporos Int; 2008 Apr; 19(4):547-58. PubMed ID: 17891327 [TBL] [Abstract][Full Text] [Related]
13. Dual-energy X-ray absorptiometry in predicting mechanical characteristics of rat femur. Järvinen TL; Sievänen H; Kannus P; Järvinen M Bone; 1998 May; 22(5):551-8. PubMed ID: 9600791 [TBL] [Abstract][Full Text] [Related]
14. The accuracy of peripheral skeletal assessment at the radius in estimating femoral bone density as measured by dual-energy X-ray absorptiometry: a comparative study of single-photon absorptiometry and computed tomography. Boonen S; Cheng X; Nicholson PH; Verbeke G; Broos P; Dequeker J J Intern Med; 1997 Oct; 242(4):323-8. PubMed ID: 9366811 [TBL] [Abstract][Full Text] [Related]
15. Current and past menstrual status is an important determinant of femoral neck geometry in exercising women. Mallinson RJ; Williams NI; Gibbs JC; Koehler K; Allaway HCM; Southmayd E; De Souza MJ Bone; 2016 Jul; 88():101-112. PubMed ID: 27129885 [TBL] [Abstract][Full Text] [Related]
16. The association between hip bone marrow lesions and bone mineral density: a cross-sectional and longitudinal population-based study. Ahedi H; Aitken D; Blizzard L; Cicuttini F; Jones G Osteoarthritis Cartilage; 2013 Oct; 21(10):1545-9. PubMed ID: 23791872 [TBL] [Abstract][Full Text] [Related]
17. Sources of variability in bone mineral density measurements: implications for study design and analysis of bone loss. Nguyen TV; Sambrook PN; Eisman JA J Bone Miner Res; 1997 Jan; 12(1):124-35. PubMed ID: 9240735 [TBL] [Abstract][Full Text] [Related]
18. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Lochmüller EM; Miller P; Bürklein D; Wehr U; Rambeck W; Eckstein F Osteoporos Int; 2000; 11(4):361-7. PubMed ID: 10928227 [TBL] [Abstract][Full Text] [Related]
19. The Singh Index does not correlate with bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DXA) or peripheral quantitative computed tomography (pQCT). Klatte TO; Vettorazzi E; Beckmann J; Pueschel K; Amling M; Gebauer M Arch Orthop Trauma Surg; 2015 May; 135(5):645-50. PubMed ID: 25739991 [TBL] [Abstract][Full Text] [Related]
20. Comparison of DXA and MRI methods for interpreting femoral neck bone mineral density. Arokoski MH; Arokoski JP; Vainio P; Niemitukia LH; Kröger H; Jurvelin JS J Clin Densitom; 2002; 5(3):289-96. PubMed ID: 12357066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]